
The asymmetry of relative entropy

(notes by Michael Baer)

This handout illustrates that, in addition to being asymmetric, relative entropy can actually
be infinite going in one direction, but finite going the other.

Relative entropy, or Kullback-Leibler divergence, is defined as

D(p||q) =
∑

x

p(x) lg
p(x)

q(x)

(where lg is log base 2) and is often thought of as a metric or distance measurement. Its
notation, D(p||q), is very metric-like, and some texts even refer to it as “K-L distance.”
Because of this, most information theoretic texts caution that D(p||q) need not be equal to
D(q||p). For example, the textbook by Cover and Thomas calculates an instance in which
D(p||q) is approximately 0.2075 bits, while D(q||p) is approximately 0.1887 bits.

This is a good method of driving this point home, but some students might be left with
the impression that, although different, perhaps these “distances” are never too far apart.
Perhaps they are like driving times; although it might take more time to enter Manhattan
from New Jersey than to go the opposite direction during morning commute hours, those
times will still be somewhat proportional to the overall “distance” between the two entities.
This handout intends to show that, in fact, one can have an instance in which D(p||q) is finite
but D(q||p) is infinite. The analogous situation would be if one could drive from Manhattan
to New Jersey in a few minutes, but could never return! This handout will further explore
precisely what this means in a lossless source coding context.

One might question how D(q||p) could be infinite, since all terms in the necessary summation
are, by definition, finite. However, if we use probability mass functions with infinite support,
then the sum of finite terms can be infinite. Let us select perhaps the two simplest and most
common infinite-support probability mass functions,

p(x) = 2−x and q(x) =
6

π2x2

for x ∈ {1, 2, 3, . . .}, and find the two divergences involving them. First:

D(p||q) =
∞
∑

x=1

p(x) lg
p(x)

q(x)
=

∞
∑

x=1

2−x

(

−x + lg
π2x2

6

)

= −
∞
∑

x=1

x2−x +
∞
∑

x=1

2−x lg
π2x2

6

= −2 + lg
π2

6
+ 2

∞
∑

x=1

2−x lg x

≈ 0.1833.
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This approximation is easy to arrive at due to the fast convergence of the final summation.
Thus the two probability mass functions seem rather close. Contrast this with:

D(q||p) =
∞
∑

x=1

q(x) lg
q(x)

p(x)
=

∞
∑

x=1

6

π2x2

(

lg
6

π2x2
+ x

)

=
6

π2
lg

6

π2

∞
∑

x=1

x−2 −
12

π2

∞
∑

x=1

x−2 lg x +
6

π2

∞
∑

x=1

x−1

= ∞

which can be arrived at by noting that only the harmonic sum term (the third additive term)
diverges.

What does this astonishing asymmetry imply? In layman’s terms, this means that, while
the power law q(x) is a good “guess” for the geometric distribution p(x), the geometric
distribution, as “guess” for the power law distribution, is not just poor, but totally unsuitable
for any information theoretic application.

For a specific application, consider lossless (zero-error) source coding. In this application,
D(q||p) expresses the additional bits necessary for coding assuming probability distribution p

when the correct distribution is q. For example, the unary code {0, 10, 100, . . .} corresponds
to p(x) (since the codeword lengths are equal to − lg p(x)), so if one uses the unary code for
coding a variable with distribution q(x), the average codeword length has D(q||p) more bits
than it would were the correct source code used. For these p and q, that means infinitely
more bits on average. By contrast, using an optimal code for q(x) to code a random variable
with probability mass function p(x) results in only about 0.1833 more bits per symbol. (Note
that this is not precise because q(x) is not dyadic and expected codeword length is thus not
equal to entropy even using this optimal code. This, however, is a minor quibble.)

In fact, D(r||q) is relatively well-behaved for any r. This is connected to the idea of a
universal code. (Such static codes should not be confused with the concept of universal
source coding, which is adaptive in nature.) A universal code is one for which there exists
a fixed, finite, positive c such that, given any monotonic p with finite H(p), the code either
uses no more than c expected bits for random variables with distribution p (if H(p) < 1)
or performs no more than c times worse than the optimal code for that random variable.
In other words, it is “good enough” for any random variable with a monotonic probability
mass function. If the code has length l(x) and s = 2−l(x), this means that, for any p with
H(p) < ∞, either H(p) < 1 with D(p||s) ≤ c − H(p), or D(p||s) ≤ (c − 1)H(p). The most
widely used universal code, the Elias γ code, has a distribution of codewords quite close
to lg q(x). For details, see P. Elias, “Universal Codeword Sets and Representations of the
Integers,” IEEE Trans. Inf. Theory, vol. IT-21, No. 2, 194–203 (March 1975).
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