
Rényi to Ŕenyi — Source Coding under Siege
Michael B. Baer

Electronics for Imaging
303 Velocity Way

Foster City, California 94404 USA
Email: Michael.Baer@efi.com

Abstract— A novel lossless source coding paradigm applies
to problems of unreliable lossless channels with low bitrate,
in which a vital message needs to be transmitted prior to
termination of communications. This paradigm can be applied
to Alfr éd Rényi’s secondhand account of an ancient siege in
which a spy was sent to scout the enemy but was captured.
After escaping, the spy returned to his base in no condition to
speak and unable to write. His commander asked him questions
that he could answer by nodding or shaking his head, and
the fortress was defended with this information. Ŕenyi told
this story with reference to traditional lossless source coding,
in which the objective is minimization of expected codeword
length. The goal of maximizing probability of survival in the siege
scenario is distinct from yet related to this traditional objective.
Rather than finding a code minimizing expected codeword lengthPn

i=1 p(i)l(i), this variant involves maximizing
Pn

i=1 p(i)θl(i) for
a known θ ∈ (0, 1). When there are no restrictions on codewords,
this problem can be solved using a known generalization of
Huffman coding. The optimal solution has coding bounds which
are functions of Rényi entropy; in addition to known bounds,
new bounds are derived here. The alphabetically constrained
version of this problem has applications in search trees and
diagnostic testing. A novel dynamic programming algorithm
— based upon the oldest known algorithm for the traditional
alphabetic problem — optimizes this problem inO(n3) time and
O(n2) space, whereas two novel approximation algorithms can
find a suboptimal solution faster: one in linear time, the other
in O(n log n). Coding bounds for the alphabetic version of this
problem are also presented.

I. INTRODUCTION

Alfred Rényi related an ancient scenario in which the
Romans held rebels under siege, rebels whose only hope
was the knowledge gathered by a mute, illiterate spy, one
who could only nod and shake his head [1, pp. 13-14]. This
apocryphal tale — based upon a historical siege — is the
premise behind the Hungarian version of the spoken parlor
game Twenty Questions. A modern parallel in the 21st century
occurred when Russian forces gained the knowledge needed
to defeat hostage-takers by asking hostages “yes” or “no”
questions over mobile phones [2], [3].

Rényi presented this problem in narrative form in order
to motivate the relation between Shannon entropy and binary
source coding. Note however that Twenty Questions, source
coding, and the siege scenario actually have three different
objectives. In Twenty Questions, the goal is to be able to
determine an item (or message) by asking at most twenty
questions. In source coding, the goal is to minimize the
expected number of questions — or, equivalently, bits —
necessary to determine the message. For the siege scenario,

the goal is survival, that is, assuming partial information is not
useful, the besieged would wish to maximize the probability
that the message is successfully transmitted within a certain
window of opportunity. When this window closes and the
siege ends, the information becomes worthless. An analogous
situation occurs when a wireless device is temporarily within
range of a base station; one can safely assume that the channel,
when available, will transmit at the lowest (constant) bitrate,
and will be lost at a nondeterministic time after its availability.

We consider this modified source coding problem and
derive properties of and algorithms for the optimization of
the problem and variants thereof. In Section II, we formalize
the problem and find its solution in a generalization of the
Huffman coding algorithm previously used for a complemen-
tary problem. Section III concerns several extensions and
variants of the problem. In particular, restricting the solution
space to alphabetic codes is considered in Section IV, with a
dynamic programming algorithm presented for optimizing the
alphabetic code, one that extends to the related problem of
search trees. In Section V, we consider entropy bounds in the
form of Rényi entropy for the unrestricted problem, leading
to a new bound and a related property involving the length of
the shortest codeword of an optimal code. Entropy bounds for
the alphabetic problem, along with linear-time approximation
algorithms, are derived in Section VI. Section VII concludes
with related work and a possible future direction.

II. FORMALIZING THE PROBLEM

A message is represented by symbolX drawn from the
alphabetX , {1, 2, . . . , n}. Symbol i has probabilityp(i),
defining probability mass functionp, known to both sender and
receiver. The source symbols are coded into binary codewords,
each bit of which is equivalent to an answer to a previously
agreed-upon “yes” or “no” question; the meaning of each
question (bit context) is implied by the previous answers
(bits), if any, in the current codeword. Each codewordc(i),
corresponding to symboli, has lengthl(i), defining overall
length vectorl and overall codeC.

Let Ln be the set of allowable codeword length vectors,
those that satisfy the Kraft inequality, that is,

Ln ,
{

l ∈ Z
n
+ such that

n∑
i=1

2−l(i) ≤ 1

}
.

Furthermore, assume that the duration of the window of
opportunity is independent of the communicated message



and is memoryless. Memorylessness implies that the window
duration is distributed exponentially. Therefore, quantizing
time in terms of the number of bitsT that we can send within
our window,

P (T = t) = (1− θ)θt, t = 0, 1, 2, . . .

with known parameterθ < 1. We then wish to maximize the
probability of success, i.e., the probability that the message
length does not exceed the quantized window length:

P [l(X) ≤ T ] =
∞∑

t=0

P (T = t) · P [l(X) ≤ t]

=
∞∑

t=0

(1− θ)θt ·
n∑

i=1

p(i)1l(i)≤t

=
n∑

i=1

p(i) · (1− θ)
∞∑

t=l(i)

θt

=
n∑

i=1

p(i)θl(i) · (1− θ)
∞∑

t=0

θt

=
n∑

i=1

p(i)θl(i)

The problem is thus the following optimization:

max
l∈Ln

P [l(X) ≤ T ] = max
l∈Ln

n∑
i=1

p(i)θl(i) (1)

To maximize this probability of success, we use a general-
ization of Huffman coding developed independently by Huet
al. [4, p. 254], Parker [5, p. 485], and Humblet [6, p. 25], [7,
p. 231]. The bottom-up algorithm of Huffman coding starts
out with n weights of the formw(i) = p(i) and combines the
two least probable symbolsx andy into a two-node subtree;
for algorithmic reduction, this subtree of combined weights is
subsequently considered as one symbol with weight (combined
probability)w(x)+w(y). (We use the term “weights” because
one can turn a problem of rational probabilities into one of
integer weights for implementation.) Reducing the problem to
one with one fewer item, the process continues recursively
until all items are combined into a single code tree. The
generalization of Huffman coding used to maximize (1) instead
assigns the weight

θ · (w(x) + w(y))

to the root node of the subtree of merged items. With this
modified combining rule, the algorithm proceeds in a similar
manner as Huffman coding, yielding a code with optimal
probability of success.

III. RELATED PROBLEMS

Note that if we use this probability of success as a tie-
breaker among codes with minimal expected length — those
optimal under the traditional measure of coding — the solution
is unique and independent of the value ofθ, a straightforward
consequence of [8]. We can obtain this optimal code by using

the top-merge variation of Huffman coding given in [9]; this
variation views combined items as “smaller” than individual
items of the same weight. Similarly, forθ sufficiently near
1 — i.e., if the amount of information to be communicated
is large compared to the size of the window in question —
the optimal solution is identical to this top-merge solution, a
straightforward result analogous to that noted in [10, p. 222].
Thus traditional Huffman coding should be used if the window
size is expected to be far larger than the message size.

Observe also that, if we change the probability ofP (T = 0)
without changing the ratios between the other probabilities,
the problem’s solution code does not change, even though
the probability of success does. There are still more criteria
that are identically optimized, including, if we have several
independent messages serially transmitted, maximizing the
number of messages expected to be sent within a window.
Another problem arises if we have a series of windows with
independent instances of the problem and want to minimize
the expected numbers of windows needed for success. The
maximization of probability minimizes this number, which is
the inverse of the probability of success in each window:

E[Nindep] =

(
n∑

i=1

p(i)θl(i)

)−1

Note that this is a risk-loving objective, in that we are more
willing than in standard coding to trade off having longer
codewords for unlikely items for having shorter codewords
for likely items.

However, if the message to send is constant across all
windows rather than independent, the expected number of
windows needed — assuming it is necessary to restart com-
munication for each window — is instead

E[Nconst] =
n∑

i=1

p(i)θ−l(i).

This is a risk-averse objective, in that we are less willing to
make the aforementioned tradeoff than in standard coding.
These distinct objective functions can be combined into one if
we normalize, that is, if we seek to minimize penalty function

Lθ(p, l) , logθ

n∑
i=1

p(i)θl(i) (2)

for θ > 0, where minimizing expected length is the limit
case ofθ → 1. Campbell first noticed this in [11]. Others
later found that the aforementioned generalized Huffman-like
algorithm optimizes this for allθ > 0, though previously only
θ ≥ 1 had any known application.

IV. A LPHABETIC CODES

Under siege, assuming the absence of a predetermined
code, using the optimal Huffman-like code would likely be
impractical, since one would need to account not only for the
time taken to answer a question, but the time needed to ask
it. In this, and in applications such as search trees and testing
for faulty devices in a sequential input-output system [12] —



assuming the answer remains binary — each question should
be of the form, “Is the output greater thanx?” where x is
one of the possible symbols, a symbol we call thesplitting
point for the corresponding node. This restriction is equivalent
to the constraint thatc(j) ≺ c(k) wheneverj < k, where
codewordsc(·) are compared using lexicographical order. The
dynamic programming algorithm of Gilbert and Moore [13]
can be adapted to this restricted problem.

The key to the modified algorithm is to note that any optimal
coding tree must have all its subtrees optimal. Since there are
n−1 possible splitting points, if we know all potential optimal
subtrees for all possible ranges, the splitting point can be
found through sequential search of the possible combinations.
The optimal tree is thus found inductively, and this algorithm
has O(n3) time complexity andO(n2) space complexity.
The dynamic programming algorithm involves finding the
maximum tree weightWj,k (and corresponding optimum tree)
for itemsj throughk for each value ofk− j from 0 to n−1,
computing inductively, starting withWj,j = w(j) (= p(j)),
with

Wj,k = θ maxs∈{j,j+1,...,k−1}[Wj,s + Ws+1,k ]

for j < k. Knuth showed how the traditional linear version
of this approach can be extended to general search trees [14];
for the siege scenario, this is a straightforward generalization,
which we omit here for brevity. For answers having unequal
cost, algorithms analogous to the linear-objective ones given
in [15], [16] are similarly formulated.

Another contribution of Knuth in [14] was to reduce algo-
rithmic complexity for the linear version using the fact that
the splitting point of an optimal tree must be between the
splitting points of the two (possible) optimal subtrees of size
n′− 1. With the siege problem, this property no longer holds;
a counterexample to this isθ = 0.6 with weights(8, 1, 9, 6).

Similarly, for the linear problem [17], as well as forθ >
1 and some nonexponential problems [4], there is a well-
known procedure — the Hu-Tucker algorithm — for finding
an optimal alphabetic solution inO(n logn) time and linear
space. The corresponding algorithm forθ < 1 fails, however,
this time forθ = 0.6 and weights(8, 1, 9, 6, 2). Approximation
algorithms presented in Section VI, though, have similar or
lesser complexity.

V. BOUNDS ON OPTIMAL CODES

Returning to the general (nonalphabetic) case, it is often
useful to come up with bounds on the performance of the
optimal code. In this section, we assume without loss of
generality thatp(1) ≥ p(2) ≥ · · · ≥ p(n). Note that
θ ≤ 0.5 is a trivial case, always solved by a unary code,
Cu , (0, 10, 110, . . . , 11· · ·10, 11· · ·11). For nontrivial θ >
0.5, there is a relationship between the problem and R´enyi
entropy.

Campbell first proposed a decaying exponential utility func-
tion for coding in [18]. He observed a simple upper bound for
(1) with θ > 0.5 in [18] and alluded to a lower bound in [19].
These bounds are similar to the well-known Shannon entropy

bounds for Huffman coding (e.g., [20, pp. 87-88], [21]). In this
case, however, the bounds involve R´enyi’s α-entropy [22], not
Shannon’s. R´enyi entropy is

Hα(p) , 1
1− α

log2

n∑
i=1

p(i)α

where, in this case,

α , 1
log22θ

=
1

1 + log2θ
.

For nontrivial maximizations (θ ∈ (0.5, 1)),

θHα(p)+1 < max
l∈Ln

P [l(X) ≤ T ] ≤ θHα(p). (3)

We can rephrase this using the definition ofLθ(p, l) in (2) as

0 ≤ min
l∈Ln

Lθ(p, l)−Hα(p) < 1, (4)

a similar result to the traditional coding bound [21]. Inequal-
ity (4) also holds for the minimization problem ofθ > 1.

As an example of these bounds, consider the probability
distribution implied by Benford’s law [23], [24]:

p(i) = log10(i + 1) − log10(i), i = 1, 2, . . . 9 (5)

At θ = 0.9, for example,Hα(p) ≈ 2.822, so the optimal
code will have between a0.668 and 0.743 chance of suc-
cess. Running the algorithm, the optimal lengths arel =
(2, 2, 3, 3, 4, 4, 4, 5, 5), resulting in a probability of success of
0.739.

More sophisticated bounds on the optimal solution for the
θ > 1 case were given in [25]; these appear as solutions
to related problems rather than in closed form. Closed-form
bounds given in [26] are functions of entropy (of degreeα) and
p(1), as in the linear case [27]–[32]. These bounds are flawed,
however, in that they assumep(1) ≥ 0.4 always implies an
optimal code exists withl(1) = 1. A simple counterexample
to this assumption isp = (0.55, 0.15, 0.15, 0.15) with θ = 2,
wherel(i) = 2 for all i.

However, whenθ < 1, because the multiplication step of
the generalized Huffman-like coding algorithm provides for a
strict reduction in weight,l(1) = 1 for any p(1) ≥ 0.4. Here
we present better conditions onl(1) = 1 and show that they
are tight, then derive better entropy bounds from them.

Theorem 1:If p(1) ≥ 2θ(2θ+3)−1, then there is an optimal
code forp with l(1) = 1.

This is a generalization of [28] and is only slightly more
complex to prove:

Proof: Recall that the generalized Huffman algorithm
combines the items with the smallest weights,w′ and w′′,
yielding a new item of weightw = θ(w′ + w′′), and this
process is repeated on the new set of weights, the tree thus
constructed up from the leaves to the root. Consider the
step at which item1 gets combined with other items; we
wish to prove that this is the last step. At the beginning
of this step the (possibly merged) items left to combine
are {1}, Sk

2 , Sk
3 , . . . , Sk

k , where we useSk
j to denote both a

(possibly merged) item of weightw(Sk
j ) and the set of (single)



items combined to make itemSk
j . Since{1} is combined in

this step, all but oneSk
j has at least weightp(1). Recall too

that all weightsw(Sk
j ) must be less than or equal to the sums

of probabilities
∑

i∈Sk
j

p(i). Then

2θ(k−1)
2θ+3

≤ (k − 1)p(1)
< p(1) +

∑k
j=2 w(Sk

j )
≤ p(1) +

∑k
j=2

∑
i∈Sk

j
p(i)

=
∑n

i=1 p(i) = 1

which, sinceθ > 0.5, means thatk < 5. Thus, becausen <
4 is a trivial case, we can consider the steps in generalized
Huffman coding at and after which four items remain, one of
which is item{1} and the others of which areS4

2 , S4
3 , andS4

4 .
We show that, ifp(1) ≥ 2/(2θ+3), these items are combined
as shown in Fig. 1.

X

{1} S2
2

S4
2If |S4

2 | > 1,
w(S4

2) =
θ[w(S′

2) + w(S′′
2 )]

S′
2 S′′

2 S4
3 S4

4

S4
3 ∪ S4

4

w(S4
3 ∪ S4

4) =
θ[w(S4

3) + w(S4
4)]

Fig. 1. Tree in last steps of the generalized Huffman algorithm

We assume without loss of generality that weightsw(S4
2 ),

w(S4
3 ), and w(S4

4 ) are in descending order. Fromw(S4
2 ) +

w(S4
3 ) + w(S4

4) ≤∑n
i=2 p(i) ≤ 3/(2θ + 3), w(S4

2 ) ≥ w(S4
3 ),

andw(S4
2) ≥ w(S4

4 ), it follows thatw(S4
3 )+w(S4

4) ≤ 2/(2θ+
3). Consider setS4

2 . If its cardinality is1, thenw(S4
2 ) ≤ p(1),

so the next step merges the least two weighted itemsS4
3 and

S4
4 . Since the merged item has weight at most2θ/(2θ+3), this

item can then be combined withS4
2 , then{1}, so thatl(1) = 1.

If S4
2 is a merged item, let us call the two items (sets) that

merged to form itS′2 andS′′2 , indicated by the dashed nodes
in Fig. 1. Because these were combined prior to this step,
w(S′2) + w(S′′2 ) ≤ w(S4

3) + w(S4
4), so w(S4

2) ≤ θ[w(S4
3) +

w(S4
4 )] ≤ 2θ/(2θ + 3). Thusw(S4

2), and by extensionw(S4
3 )

andw(S4
4), are at mostp(1). SoS4

3 andS4
4 can be combined

and this merged item can be combined withS4
2 , then {1},

again resulting inl(1) = 1.
This can be shown to be tight by noting that

pε ,
(

2θ
2θ + 3

− 3ε,
1

2θ + 3
+ ε,

1
2θ + 3

+ ε,
1

2θ + 3
+ ε

)
has optimal length vectorl = (2, 2, 2, 2) for any ε ∈ (0, (2θ−
1)(8θ + 12)−1).

Upper bounds derived from this, although rather compli-
cated, are improved.

Corollary 1: For l(1) = 1 (and thus for allp(1) ≥ 2θ(2θ+
3)−1) andθ < 1, the following holds:

n∑
i=1

p(i)θl(i) > θ2
[
θαHα(p) − p(1)α

] 1
α

+ θp(1)

This is a straightforward consequence of Theorem 1 and a
proof is thus omitted for space. This upper bound is tight for
p(1) ≥ 0.5, asp = (p(1), 1−p(1)+ ε, ε) gets arbitrarily close
for small ε.

Let us apply this result to the Benford distribution in (5)
for θ = 0.6. In this case,Hα(p) ≈ 2.260 and p(1) >
2θ(2θ + 3)−1, so l(1) = 1 and the probability of success
is between0.251 and 0.315 = θHα(p); the simpler (inferior)
lower probability bound in (3) is0.189. The optimal code
is l = (1, 2, 3, 4, 5, 6, 7, 8, 8), which yields a probability of
success of0.296.

VI. A PPROXIMATION ALGORITHMS AND BOUNDS FOR

ALPHABETIC CODES

Returning again to alphabetic codes, if the dynamic pro-
gramming solution is too time- or space-consuming, an ap-
proximation algorithm can be used. A simple approximation
algorithm involves adding one to each of the lengths of an
optimal nonalphabetic code; this yields lengths corresponding
to an alphabetic code, since

∑
i 2−l(i) ≤ 0.5 is sufficient to

have an alphabetic code [33, p. 34], [12, p. 565]. Putting the
lengths into (2),

Lhuff
θ (p) ≤ Lalpha

θ (p) ≤ 1 + Lhuff
θ (p)

whereLhuff
θ (p) is the cost of the optimal code for the non-

alphabetic problem. Limits in terms of R´enyi entropy follow
from the previous section, and the following improved approx-
imation algorithm means that the right inequality is strict.

Approximation can be improved by utilizing techniques in
[12] and [34]. The improved algorithm has two versions, one
of which is linear time, using the Shannon-like

l§(i) ,


−αlog2p(i) + log2


 n∑

j=1

p(j)α






and one of which isO(n logn) (or linear if sorting weights
can be done in linear time).

Procedure for Finding a Near-Optimal Code

1) Start with an optimal or near-optimal nonalphabetic
code, lnon, such as the Shannon-likelnon = l§ or the
Huffman-like lnon = lhuff.

2) Find the set of all minimal points,M. A minimal point
is any i such that1 < i < n, l(i) < l(i − 1), and
l(i) < l(i + 1). Additionally, if l(i − 1) > l(i) = l(i +
1) = · · · = l(i + k) < l(i + k + 1), then, of these, only
j ∈ [i, i + k] minimizing w(j) (or p(j)) is a minimal
point.



3) Assign a preliminary alphabetic code with lengthslpre =
lnon+1 for all minimal points, andlpre = lnon for all other
items. This corresponds to an alphabetic codeCpre. Note
that such an alphabetic code is easy to construct; the first
codeword isl(1) zeros, and each additional codeword
c(i) is obtained by either truncatingc(i−1) to l(i) digits
and adding1 to the binary representation (ifl(i) ≤ l(i−
1)) or by adding1 to the binary representation ofc(i−1)
and appendingl(i) − l(i− 1) zeros (if l(i) > l(i− 1)).

4) Go through the code tree (with, e.g., a depth-first search),
and replace any node having only one child with its
grandchild or grandchildren. At the end of this process,
an alphabetic code with

∑n
i=1 2−l(i) = 1 is obtained.

This hybrid of the approaches of Nakatsu [34] and Yeung
[12] can be easily applied to allθ > 0, including the
linear limit case, for which it is an improved approximation
technique whenlnon = lhuff.

VII. RELATED WORK, EXTENSIONS, AND CONCLUSION

The algorithms presented here will not work ifn = ∞,
although methods are known of finding codes for geometric
and lighter distributions [35] and existence results are known
for all finite-(Rényi) entropy distributions [36]. Also, although
presented here in binary form for simplicity’s sake, nonalpha-
betic results readily extend toD-ary codes [7], [18], [19].
The alphabetic algorithm extends in a manner akin to that
shown for the extension of the Gilbert and Moore algorithm
in [15, pp. 15-16]. Further upper bounds on optimalLθ(p, l)
are elusive, but should be quite similar to those for the linear
case, at least forθ < 1, since the distributions approaching
or achieving these bounds should be of bounded cardinality
almost everywhere.

In conclusion, when R´enyi’s siege scenario is formalized,
problem solutions involve Huffman coding, dynamic program-
ming, and, appropriately, R´enyi entropy.

ACKNOWLEDGMENTS

The author would like to thank Thomas M. Cover, T.
C. Hu, and J. David Morgenthaler for discussions and en-
couragement on this topic, as well as the two anonymous
reviewers for suggestions on presentation. The author was
partially supported, while at Stanford University in the initial
phase of this research, by the National Science Foundation
(NSF) under Grant CCR-9973134 and the Multidisciplinary
University Research Initiative (MURI) under Grant DAAD-
19-99-1-0215.

REFERENCES

[1] A. Rényi, A Diary on Information Theory. New York, NY: John Wiley
& Sons Inc., 1987, original publication:Naplò az információelméletről,
Gondolat, Budapest, Hungary, 1976.

[2] P. Mendenhall, “Cellphones were rebels’ downfall,” Oct. 26, 2002.
[3] J. Taranto, “Best of the Web today,” Oct. 28,2002, available from http:

//www.opinionjournal.com/best/?id=110002538.
[4] T. Hu, D. Kleitman, and J. Tamaki, “Binary trees optimumunder various

criteria,” SIAM J. Appl. Math., vol. 37, no. 2, pp. 246–256, Apr. 1979.
[5] D. Parker, Jr., “Conditions for optimality of the Huffman algorithm,”

SIAM J. Comput., vol. 9, no. 3, pp. 470–489, Aug. 1980.

[6] P. Humblet, “Source coding for communication concentrators,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1978.

[7] ——, “Generalization of Huffman coding to minimize the probability of
buffer overflow,” IEEE Trans. Inf. Theory, vol. IT-27, no. 2, pp. 230–232,
Mar. 1981.

[8] G. Markowsky, “Best Huffman trees,”Acta Informatica, vol. 16, pp.
363–370, 1981.

[9] E. Schwartz, “An optimum encoding with minimum longest code and
total number of digits,”Inf. Contr., vol. 7, no. 1, pp. 37–44, Mar. 1964.

[10] D. Knuth, “Huffman’s algorithm via algebra,”J. Comb. Theory, Ser. A,
vol. 32, pp. 216–224, 1982.

[11] L. Campbell, “Block coding and R´enyi’s entropy,” Int. J. Math. Stat.
Sci., vol. 6, no. 1, pp. 41–47, June 1997.

[12] R. Yeung, “Alphabetic codes revisited,”IEEE Trans. Inf. Theory, vol.
IT-37, no. 3, pp. 564–572, May 1991.

[13] E. Gilbert and E. Moore, “Variable-length binary encodings,”Bell Syst.
Tech. J., vol. 38, pp. 933–967, July 1959.

[14] D. Knuth, “Optimum binary search trees,”Acta Informatica, vol. 1, pp.
14–25, 1971.

[15] A. Itai, “Optimal alphabetic trees,”SIAM J. Comput., vol. 5, no. 1, pp.
9–18, Mar. 1976.

[16] M. Baer, “On conditional branches in search trees,” preprint available
from http://arxiv.org/abs/cs.PF/0604016.

[17] T. Hu and A. Tucker, “Optimal computer search trees and variable length
alphabetic codes,”SIAM J. Appl. Math., vol. 21, no. 4, pp. 514–532, Dec.
1971.

[18] L. Campbell, “Definition of entropy bymeans of a coding problem,”Z.
Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 6, pp. 113–118,
1966.

[19] ——, “A coding problem and R´enyi’s entropy,”Inf. Contr., vol. 8, no. 4,
pp. 423–429, Aug. 1965.

[20] T. Cover and J. Thomas,Elements of Information Theory. New York,
NY: Wiley-Interscience, 1991.

[21] C. Shannon, “A mathematical theory of communication,”Bell Syst. Tech.
J., vol. 27, pp. 379–423, July 1948.

[22] A. Rényi, “On measures of entropy and information,” inProc. 4th
Berkeley Symposium on Mathematical Statistics and Probability, vol. 1,
1961, pp. 547–561.

[23] S. Newcomb, “Note on the frequency of use of the different digits in
natural numbers,”Amer. J. Math., vol. 4, no. 1/4, pp. 39–40, 1881.

[24] F. Benford, “The law of anomalous numbers,”Proc. Amer. Phil. Soc.,
vol. 78, no. 4, pp. 551–572, Mar. 1938.

[25] A. Blumer and R. McEliece, “The R´enyi redundancy of generalized
Huffman codes,”IEEE Trans. Inf. Theory, vol. IT-34, no. 5, pp. 1242–
1249, Sept. 1988.

[26] I. Taneja, “A short note on the redundancy of degreeα,” Inf. Sci., vol. 39,
no. 2, pp. 211–216, Sept. 1986.

[27] R. Gallager, “Variations on a theme by Huffman,”IEEE Trans. Inf.
Theory, vol. IT-24, no. 6, pp. 668–674, Nov. 1978.

[28] O. Johnsen, “On the redundancy of binary Huffman codes,”IEEE Trans.
Inf. Theory, vol. IT-26, no. 2, pp. 220–222, Mar. 1980.

[29] R. Capocelli, R. Giancarlo, and I. J. Taneja, “Bounds on the redundancy
of Huffman codes,”IEEE Trans. Inf. Theory, vol. IT-32, no. 6, pp. 854–
857, Nov. 1986.

[30] B. Montgomery and J. Abrahams, “On the redundancy of optimal binary
prefix-condition codes for finite and infinite sources,” IEEE Trans. Inf.
Theory, vol. IT-33, no. 1, pp. 156–160, Jan. 1987.

[31] R. Capocelli and A. De Santis, “Tight upper bounds on the redundancy
of Huffman codes,”IEEE Trans. Inf. Theory, vol. IT-35, no. 5, pp. 1084–
1091, Sept. 1989.

[32] D. Manstetten, “Tight bounds on the redundancy of Huffman codes,”
IEEE Trans. Inf. Theory, vol. IT-37, no. 1, pp. 144–151, Jan. 1992.

[33] R. Ahlswede and I. Wegener,Search Problems. New York, NY: John
Wiley & Sons Inc., 1987.

[34] N. Nakatsu, “Bounds on the redundancy of binary alphabetical codes,”
IEEE Trans. Inf. Theory, vol. IT-37, no. 4, pp. 1225–1229, July 1991.

[35] M. Baer, “Integer coding withnonlinear costs,”IEEE Trans. Inf. Theory,
submitted for publication.

[36] ——, “Source coding for quasiarithmetic penalties,”IEEE Trans. Inf.
Theory, submitted for publication.


