
D-ary Bounded-Length Huffman Coding
Michael B. Baer

Electronics for Imaging
303 Velocity Way

Foster City, California 94404 USA
Email: Michael.Baer@efi.com

Abstract— Efficient optimal prefix coding has long been ac-
complished via the Huffman algorithm. However, there is still
room for improvement and exploration regarding variants of
the Huffman problem. Length-limited Huffman coding, useful
for many practical applications, is one such variant, in which
codes are restricted to the set of codes in which none of then
codewords is longer than a given length,lmax. Binary length-
limited coding can be done inO(nlmax) time and O(n) space
via the widely used Package-Merge algorithm. In this paper
the Package-Merge approach is generalized without increasing
complexity in order to introduce a minimum codeword length,
lmin, to allow for objective functions other than the minimization
of expected codeword length, and to be applicable to both binary
and nonbinary codes; nonbinary codes were previously addressed
using a slower dynamic programming approach. These extensions
have various applications — including faster decompression —
and can be used to solve the problem of finding an optimal code
with limited fringe, that is, finding the best code among codes
with a maximum difference between the longest and shortest
codewords. The previously proposed method for solving this
problem was nonpolynomial time, whereas solving this usingthe
novel algorithm requires only O(n(lmax − lmin)

2) time and O(n)
space.

I. I NTRODUCTION

A source emits input symbols drawn from the alphabetX =
{1, 2, . . . , n}, wheren is an integer. Symboli has probability
pi, thus defining probability vectorp = (p1, p2, . . . , pn). Only
possible symbols are considered for coding and these are,
without loss of generality, sorted in decreasing order of proba-
bility; thus pi > 0 andpi ≤ pj for everyi > j such thati, j ∈
X . Each input symbol is encoded into a codeword composed
of output symbols of theD-ary alphabet{0, 1, . . . , D − 1}.
The codewordci corresponding to input symboli has length
li, thus defining length vectorl = (l1, l2, . . . , ln). The code
should be a prefix code, i.e., no codewordci should begin with
the entirety of another codewordcj .

For thebounded-lengthcoding variant of Huffman coding
introduced here, all codewords must have lengths lying in
a given interval [lmin,lmax]. Consider an application in the
problem of designing a data codec which is efficient in
terms of both compression ratio and coding speed. Moffat
and Turpin proposed a variety of efficient implementations
of prefix encoding and decoding in [1], each involving table
lookups rather than code trees. They noted that the length
of the longest codeword should be limited for computational
efficiency’s sake. Computational efficiency is also improved by
restricting the overall range of codeword lengths, reducing the
size of the tables and the expected time of searches requiredfor

decoding. Thus, one might wish to have a minimum codeword
size of, say,lmin = 16 bytes and a maximum codeword size of
lmax = 32 bytes (D = 2). If expected codeword length for an
optimal code found under these restrictions is too long,lmin

can be reduced and the algorithm rerun until the proper trade-
off between coding speed and compression ratio is found.

A similar problem is one of determining opcodes of a
microprocessor designed to use variable-length opcodes, each
a certain number of bytes (D = 256) with a lower limit and
an upper limit to size, e.g., a restriction to opcodes being 16,
24, or 32 bits long (lmin = 2, lmax = 4). This problem clearly
falls within the context considered here, as does the problem
of assigning video recorder scheduling codes; these human-
readable decimal codes (D = 10) also have bounds on their
size, such aslmin = 3 and lmax = 8.

Other problems of interest havelmin = 0 and are thus
length limited but have no practical lower bound on length
[2, p. 396]. Yet other problems have not fixed bounds but a
constraint on the difference between minimum and maximum
codeword length, a quantity referred to as fringe [3, p. 121].
As previously noted, large fringe has a negative effect of the
speed of a decoder.

If we either do not require a minimum or do not require a
maximum, it is easy to find values forlmin or lmax that do not
limit the problem. As mentioned, settinglmin = 0 results in a
trivial minimum, as doeslmin = 1. Similarly, settinglmax = n
or using the hard upper boundlmax = ⌈(n−1)/(D−1)⌉ results
in a trivial maximum value.

If both minimum and maximum values are trivial, Huffman
coding [4] yields a prefix code minimizing expected codeword
length

∑

i pili. The conditions necessary and sufficient for the
existence of a prefix code with length vectorl are the integer
constraint,li ∈ Z+, and the Kraft (McMillan) inequality [5],

κ(l) ,

n
∑

i=1

D−li ≤ 1. (1)

Finding values forl is sufficient to find a corresponding code.
It is not always obvious that we should minimize the

expected number of questions
∑

i pili (or, equivalently, the
expected number of questions in excess of the firstlmin,
∑

i pi(li−lmin)
+, wherex+ is x if x is positive,0 otherwise).

We generalize and investigate how to minimize the value
n

∑

i=1

piϕ(li − lmin) (2)

under the above constraints for anypenalty functionϕ(·)
convex and increasing onR+. Such an additive measurement
of cost is called aquasiarithmetic penalty, in this case a convex
quasiarithmetic penalty.

One such functionϕ isϕ(δ) = (δ+lmin)
2, a quadratic value

useful in optimizing a communications delay problem [6].
Another function,ϕ(δ) = Dt(δ+lmin) for t > 0, can be used
to minimize the probability of buffer overflow in a queueing
system [7].

Mathematically stating the bounded-length problem,

Given p = (p1, . . . , pn), pi > 0;
D ∈ {2, 3, . . .};
convex, monotonically increasing
ϕ : R+ → R+

Minimize{l}

∑

i piϕ(li − lmin)
subject to

∑

iD
−li ≤ 1;

li ∈ {lmin, lmin + 1, . . . , lmax}.

Note that we need not assume that probabilitiespi sum to1;
they could instead be arbitrary positive weights.

Given a finiten-symbol input alphabet with an associated
probability vectorp, a D-symbol output alphabet with code-
words of lengths[lmin, lmax] allowed, and a constant-time
calculable penalty functionϕ, we describe anO(n(lmax −
lmin))-timeO(n)-space algorithm for constructing aϕ-optimal
code. In Section II, we present a brief review of the relevant
literature before extending toD-ary codes a notation first
presented in [6]. This notation aids in solving the problem
in question by reformulating it as an instance of theD-
ary Coin Collector’s problem, presented in the section as an
extension of the original (binary) Coin Collector’s problem
[8]. An extension of the Package-Merge algorithm solves this
problem; we introduce the reduction and resulting algorithm in
Section III. An application to a previously proposed problem
involving tree fringe is discussed in Section IV.

II. PRELIMINARIES

Reviewing how the problem in question differs from binary
Huffman coding:

1) It can be nonbinary, a case considered by Huffman in
his original paper [4];

2) There is a maximum codeword length, a restriction
previously considered, e.g., [9] inO(n3lmax logD) time
[10] andO(n2 logD) space, but solved efficiently only
for binary coding, e.g., [8] inO(nlmax) timeO(n) space
and most efficiently in [11];

3) There is a minimum codeword length, a novel restric-
tion;

4) The penalty can be nonlinear, a modification previously
considered, but only for binary coding, e.g., [12].

The minimum size constraint on codeword length requires
a relatively simple change of solution range to [8]. The nonbi-
nary coding generalization is a bit more involved; it requires
first modifying the Package-Merge algorithm to allow for an
arbitrary numerical base (binary, ternary, etc.), then modifying
the coding problem to allow for a provable reduction to the

modified Package-Merge algorithm. TheO(n(lmax − lmin))-
time O(n)-space algorithm minimizesheight (that is, max-
imum codeword length) among optimal codes (if multiple
optimal codes exist).

Before presenting an algorithm for optimizing the above
problem, we introduce a notation for codes that generalizes
one first presented in [6] and modified in [12].

The key idea:Each node(i, l) represents both the share of
the penalty (2) (weight) and the (scaled) share of the Kraft
sum (1) (width) assumed for thelth bit of the ith codeword.
By showing that total weight is an increasing function of the
penalty and that there is a one-to-one correspondence between
an optimal code and a corresponding optimal nodeset, we
reduce the problem to an efficiently solvable problem, the Coin
Collector’s problem.

In order to do this, we first need to make a modification to
the problem analogous to one Huffman made in his original
nonbinary solution. We must in some cases add a “dummy” in-
put or “dummy” inputs of probabilitypi = 0 to the probability
vector to assure that the optimal code has the Kraft inequality
satisfied with equality, an assumption underlying both the
Huffman algorithm and ours. If we use the minimum number
of dummy inputs needed to maken mod (D − 1) ≡ 1, we
can assume without loss of generality thatκ(l) = 1. With this
modification, we presentnodesetnotation:

Definition 1: A node is an ordered pair of integers(i, l)
such thati ∈ {1, . . . , n} and l ∈ {lmin + 1, . . . , lmax}. Call
the set of all possible nodesI. This set can be arranged in an
n×(lmax−lmin) grid, e.g., Fig. 1. The set of nodes, ornodeset,
corresponding to input symboli (assigned codewordci with
length li) is the set of the firstli − lmin nodes of columni,
that is, ηl(i) , {(j, l) | j = i, l ∈ {lmin + 1, . . . , li}}. The
nodeset corresponding to length vectorl is η(l) ,

⋃

i ηl(i);
this corresponds to a set ofn codewords, a code. Thus, in
Fig. 1, the dashed line surrounds a nodeset corresponding to
l = (1, 2, 2, 2, 2, 2, 2). We say a node(i, l) haswidth ρ(i, l) ,

D−l and weightµ(i, l) , piϕ(l − lmin) − piϕ(l − lmin − 1),
as shown in the example in Fig. 1. Note that ifϕ(l) = l,
µ(i, l) = pi.
Given valid nodesetN ⊆ I, it is straightforward to find
the corresponding length vector and, if it satisfies the Kraft
inequality, a code.

We find an optimal nodeset using theD-ary Coin Collector’s
problem. LetDZ denote the set of all integer powers of a
fixed integerD > 1. The Coin Collector’s problem of sizem
considers “coins” indexed byi ∈ {1, 2, . . . ,m}. Each coin has
a width,ρi ∈ DZ; one can think of width as coin face value,
e.g.,ρi = 0.25 = 2−2 for a quarter dollar (25 cents). Each
coin also has a weight,µi ∈ R. The final problem parameter
is total width, denotedρtot. The problem is then:

Minimize{B⊆{1,...,m}}

∑

i∈B µi

subject to
∑

i∈B ρi = ρtot

where m ∈ Z+, µi ∈ R

ρi ∈ DZ, ρtot ∈ R+.

(3)

We thus wish to choose coins with total widthρtot such that
their total weight is as small as possible. This problem has
a linear-time solution given sorted inputs; this solution was
found forD = 2 in [8] and is found forD > 2 here.

Let i ∈ {1, . . . ,m} denote both the index of a coin and the
coin itself, and letI represent them items along with their
weights and widths. The optimal solution, a function of total
width ρtot and itemsI, is denotedCC(I, ρtot) (the optimal
coin collection forI and ρtot). Note that, due to ties, this
need not be a unique solution, but the algorithm proposed here
is deterministic; that is, it finds one specific solution, much
like bottom-merge Huffman coding [13] or the corresponding
length-limited problem [12], [14]

Because we only consider cases in which a solution exists,
ρtot = ωρpow for someρpow ∈ DZ and ω ∈ Z+. Here,
assumingρtot > 0, ρpow andω are the unique pair of a power
of D and an integer that is not a multiple ofD, respectively,
which, multiplied, formρtot. If ρtot = 0, ω andρpow are not
used. Note thatρpow need not be an integer.

Algorithm variables
At any point in the algorithm, given nontrivialI andρtot, we
use the following definitions:

Remainder
ρpow , the uniquex ∈ DZ

such thatρtot

x
∈ Z\DZ

Minimum width
ρ∗ , mini∈I ρi (∈ DZ)

Small width set
I∗ , {i | ρi = ρ∗} (6= ∅)

“First” item
i∗ , arg mini∈I∗µi

(ties broken w/highest index)

“First” package

P∗ ,























P such that
|P| = D,
P ⊆ I∗,
P � I∗\P , |I∗| ≥ D

∅, |I∗| < D
(ties broken w/highest indices)

whereDZ denotes integer multiples ofD and P � I∗\P
denotes that, for alli ∈ P and j ∈ I∗\P , µi ≤ µj . Then the
following is a recursive description of the algorithm:

RecursiveD-ary Package-Merge Procedure
Basis.ρtot = 0: CC(I, ρtot) = ∅.
Case 1. ρ∗ = ρpow and I 6= ∅: CC(I, ρtot) =

CC(I\{i∗}, ρtot − ρ∗) ∪ {i∗}.
Case 2a.ρ∗ < ρpow, I 6= ∅, and |I∗| < D: CC(I, ρtot) =

CC(I\I∗, ρtot).
Case 2b.ρ∗ < ρpow, I 6= ∅, and |I∗| ≥ D: Createi′, a

new item with weightµi′ =
∑

i∈P∗ µi and widthρi′ = Dρ∗.
This new item is thus a combined item, orpackage, formed
by combining theD least weighted items of widthρ∗. Let
S = CC(I\P∗∪{i′}, ρtot) (the optimization of the packaged

version, where the package is given a low index so that,
if “repackaged,” this occurs after all singular or previously
packaged items of identical weight and width). Ifi′ ∈ S, then
CC(I, ρtot) = S\{i′} ∪ P∗; otherwise,CC(I, ρtot) = S.

Theorem 1:If an optimal solution to the Coin Collector’s
problem exists, the above recursive (Package-Merge) algo-
rithm will terminate with an optimal solution.

Proof: Using induction on the number of input items,
while the basis is trivially correct, each inductive case reduces
the number of items by at least one. The inductive hypothesis
on ρtot ≥ 0 and I 6= ∅ is that the algorithm is correct for
any problem instance with fewer input items than instance
(I, ρtot).

If ρ∗ > ρpow > 0, or if I = ∅ andρtot 6= 0, then there is
no solution to the problem, contrary to our assumption. Thus
all feasible cases are covered by those given in the procedure.
Case 1 indicates that the solution must contain at least one
element (item or package) of widthρ∗. These must include
the minimum weight item inI∗, since otherwise we could
substitute one of the items with this “first” item and achieve
improvement. Case 2 indicates that the solution must contain
a number of elements of widthρ∗ that is a multiple ofD. If
this number is0, none of the items inP∗ are in the solution.
If it is not, then they all are. Thus, ifP∗ = ∅, the number is
0, and we have Case 2a. If not, we may “package” the items,
considering the replaced package as one item, as in Case 2b.
Thus the inductive hypothesis holds.

The algorithm can be performed in linear time and space,
as with the binary version [8].

III. A G ENERAL ALGORITHM

Theorem 2:The solutionN of the Package-Merge algo-
rithm for I = I and

ρtot =
n−Dlmin

D − 1
D−lmin

has a corresponding length vectorl
N such thatN = η(lN)

andµ(N) = minl

∑

i piϕ(li − lmin) − ϕ(0)
∑

i pi.
A formal proof can be found in the full version at [15]. The

idea is to show that, if there is an(i, l) ∈ N with l ∈ [lmin +
2, lmax] such that(i, l − 1) ∈ I\N , one can strictly decrease
the penalty by substituting item(i, l − 1) for a set of items
including (i, l), showing the suboptimality ofN . Conversely,
if there is no such(i, l), optimalN corresponds to an optimal
length vector.

Because the Coin Collector’s problem is linear in time and
space — same-width inputs are presorted by weight, numerical
operations and comparisons are constant time — the overall
algorithm finds an optimal code inO(|I|) = O(n(lmax−lmin))
time and space. Space complexity, however, can be lessened.
This is because the algorithm output is a monotonic nodeset:

Definition 2: A monotonic nodeset,N , is one with the
following properties:

(i, l) ∈ N ⇒ (i+ 1, l) ∈ N for i < n (4)

(i, l) ∈ N ⇒ (i, l − 1) ∈ N for l > lmin + 1. (5)

l (level)

i (input symbol)

µ(1, 2) = p1 µ(2, 2) = p2 µ(3, 2) = p3 µ(4, 2) = p4 µ(5, 2) = p5 µ(6, 2) = p6 µ(7, 2) = p7

µ(1, 3) = 3p1 µ(2, 3) = 3p2 µ(3, 3) = 3p3 µ(4, 3) = 3p4 µ(5, 3) = 3p5 µ(6, 3) = 3p6 µ(7, 3) = 3p7

µ(1, 4) = 5p1 µ(2, 4) = 5p2 µ(3, 4) = 5p3 µ(4, 4) = 5p4 µ(5, 4) = 5p5 µ(6, 4) = 5p6 µ(7, 4) = 5p7

ρ(1, 2) = 1

9
ρ(2, 2) = 1

9
ρ(3, 2) = 1

9
ρ(4, 2) = 1

9
ρ(5, 2) = 1

9
ρ(6, 2) = 1

9
ρ(7, 2) = 1

9

ρ(1, 3) = 1

27
ρ(2, 3) = 1

27
ρ(3, 3) = 1

27
ρ(4, 3) = 1

27
ρ(5, 3) = 1

27
ρ(6, 3) = 1

27
ρ(7, 3) = 1

27

ρ(1, 4) = 1

81
ρ(2, 4) = 1

81
ρ(3, 4) = 1

81
ρ(4, 4) = 1

81
ρ(5, 4) = 1

81
ρ(6, 4) = 1

81
ρ(7, 4) = 1

81

1 2

2

3

3

4

4

5 6 7

Fig. 1. The set of nodesI with widths {ρ(i, l)} and weights{µ(i, l)} for ϕ(δ) = δ2, n = 7, D = 3, lmin = 1, lmax = 4

In other words, a nodeset is monotonic if and only if it corre-
sponds to a length vectorl with lengths sorted in increasing
order; this definition is equivalent to that given in [8].

While not all optimal codes are monotonic, using the
aforementioned tie-breaking techniques, the algorithm always
results in a monotonic code, one that has minimum maximum
length among all monotonic optimal codes. Examples of
monotonic nodesets include the sets of nodes enclosed by
dashed lines in Fig. 1 and Fig. 2. In the latter case,n = 21,
D = 3, lmin = 2, and lmax = 8, so ρtot = 2/3.

In [8], monotonicity allows trading off a constant factor
of time for drastically reduced space complexity for length-
limited binary codes. We extend this to the bounded-length
problem. Note that the total width of items that are each less
than or equal to widthρ is less than2nρ. Thus, when we
are processing items and packages of widthρ, fewer than2n
packages are kept in memory. The key idea in reducing space
complexity is to keep only four attributes of each package in
memory instead of the full contents. In this manner, we use
O(n) space while retaining enough information to reconstruct
the optimal nodeset in algorithmic postprocessing.

Package attributes allow us to divide the problem into two
subproblems with total complexity that is at most half that of
the original problem. Define

lmid ,

⌊

1

2
(lmax + lmin + 1)

⌋

.

For each packageS, we retain only the following attributes:

1) µ(S) ,
∑

(i,l)∈S µ(i, l)

2) ρ(S) ,
∑

(i,l)∈S ρ(i, l)

3) ν(S) , |S ∩ Imid|
4) ψ(S) ,

∑

(i,l)∈S∩Ihi
ρ(i, l)

whereIhi , {(i, l) | l > lmid} andImid , {(i, l) | l = lmid}.
We also defineIlo , {(i, l) | l < lmid}.

With only these parameters, the “first run” of the algorithm
takesO(n) space. The output of this run is the package

attributes of the optimal nodesetN . Thus, at the end of this
first run, we know the value fornν , ν(N), and we can
considerN as the disjoint union of four sets, shown in Fig. 2:

1) A = nodes inN ∩ Ilo with indexes in[1, n− nν],
2) B = nodes inN ∩ Ilo with indexes in[n− nν + 1, n],
3) Γ = nodes inN ∩ Imid,
4) ∆ = nodes inN ∩ Ihi.

Due to the monotonicity ofN , it is clear thatB = [n− nν +
1, n]× [lmin + 1, lmid − 1] andΓ = [n− nν + 1, n]× {lmid}.
Note then thatρ(B) = (nν)(D−lmin −D1−lmid)/(D− 1) and
ρ(Γ) = nνD

−lmid . Thus we need merely to recompute which
nodes are inA and in∆.

Because∆ is a subset ofIhi, ρ(∆) = ψ(N) andρ(A) =
ρ(N)−ρ(B)−ρ(Γ)−ρ(∆). Given their respective widths,A is
a minimal weight subset of[1, n−nν]× [lmin+1, lmid−1] and
∆ is a minimal weight subset of[n−nν+1, n]×[lmid+1, lmax].
These will be monotonic if the overall nodeset is monotonic.
The nodes at each level ofA and ∆ can thus be found by
recursive calls to the algorithm. This approach uses onlyO(n)
space while preserving time complexity as in [8].

There are changes we can make to the algorithm that, for
certain inputs, will result in even better performance. For
example, if lmax ≈ logD n, then, rather than minimizing
the weight of nodes of a certain total width, it is easier to
maximize weight and find the complementary set of nodes.
Similarly, if most input symbols have one of a handful of
probability values, one can consider this and simplify calcula-
tions. These and other similar optimizations have been donein
the past for the special caseϕ(δ) = δ, lmin = 0, D = 2 [16]–
[20], though we will not address or extend such improvements
here.

Note also that there are cases in which we can find a better
upper bound for codeword length thanlmax or a better lower
bound thanlmin. In such cases, complexity is accordingly
reduced, and, whenlmax is effectively trivial (e.g.,lmax =
n − 1), and the Package-Merge approach can be replaced

A B

Γ

∆

N

D−lmin+1

D−lmid

D−lmax

lmin + 1

lmid

lmax

nn− nν1

l (level)

i (input symbol)

ρ (width)

Fig. 2. The set of nodesI, an optimal nodesetN , and disjoint subsetsA, B, Γ , ∆

by conventional (linear-time) Huffman coding approaches.
Likewise, whenϕ(δ) = δ and lmax − lmin is not O(log n),
an approach similar to that of [21] as applied in [11] has
better asymptotic performance. These alternative approaches
are omitted due to space and can be found at [15].

IV. FRINGE-LIMITED PREFIX CODING

An important problem that can be solved with the tech-
niques in this paper is that of finding an optimal code given
an upper bound on fringe, the difference between minimum
and maximum codeword length; such a problem is proposed
in [3, p. 121], where it is suggested that if there areb − 1
codes better than the best code with fringe at mostd, one
can find thisb-best code with theO(bn3)-time algorithm in
[22, pp. 890–891], thus solving the fringe-limited problem.
However, this presumes we know an upper bound forb before
running this algorithm. More importantly, if a probability
vector is far from uniform,b can be very large, since the
number of viable code trees isΘ(1.794 . . .n) [23], [24]. Thus
this is a poor approach in general. Instead, we can use the
aforementioned algorithms for finding the optimal bounded-
length code with codeword lengths restricted to[l′ − d, l′] for
eachl′ ∈ {⌈logD n⌉, ⌈logD n⌉+1, . . . , ⌊logD n⌋+d}, keeping
the best of these codes; this covers all feasible cases of fringe
upper bounded byd. (Here we again assume, without loss of
generality, thatn mod (D − 1) ≡ 1.) The overall procedure
thus has time complexityO(nd2) andO(n) space complexity.

ACKNOWLEDGMENTS

The author wishes to thank Zhen Zhang for first bringing a
related problem to his attention and David Morgenthaler for
constructive discussions on this topic.

REFERENCES

[1] A. Moffat and A. Turpin, “On the implementation of minimum redun-
dancy prefix codes,”IEEE Trans. Commun., vol. 45, no. 10, pp. 1200–
1207, Oct. 1997.

[2] I. H. Witten, A. Moffat, and T. Bell,Managing Gigabytes, 2nd ed. San
Francisco, CA: Morgan Kaufmann Publishers, 1999.

[3] J. Abrahams, “Code and parse trees for lossless source encoding,”
Communications in Information and Systems, vol. 1, no. 2, pp. 113–
146, Apr. 2001.

[4] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[5] B. McMillan, “Two inequalities implied by unique decipherability,” IRE
Trans. Inf. Theory, vol. IT-2, no. 4, pp. 115–116, Dec. 1956.

[6] L. L. Larmore, “Minimum delay codes,”SIAM J. Comput., vol. 18, no. 1,
pp. 82–94, Feb. 1989.

[7] P. A. Humblet, “Generalization of Huffman coding to minimize the
probability of buffer overflow,” IEEE Trans. Inf. Theory, vol. IT-27,
no. 2, pp. 230–232, Mar. 1981.

[8] L. L. Larmore and D. S. Hirschberg, “A fast algorithm for optimal
length-limited Huffman codes,”J. ACM, vol. 37, no. 2, pp. 464–473,
Apr. 1990.

[9] A. Itai, “Optimal alphabetic trees,”SIAM J. Comput., vol. 5, no. 1, pp.
9–18, Mar. 1976.

[10] L. Gotlieb and D. Wood, “The construction of optimal multiway search
trees and the monotonicity principle,”Intern. J. Computer Maths, Section
A, vol. 9, no. 1, pp. 17–24, 1981.

[11] B. Schieber, “Computing a minimum-weightk-link path in graphs with
the concave Monge property,”Journal of Algorithms, vol. 29, no. 2, pp.
204–222, Nov. 1998.

[12] M. B. Baer, “Source coding for quasiarithmetic penalties,” IEEE Trans.
Inf. Theory, vol. IT-52, no. 10, pp. 4380–4393, Oct. 2006.

[13] E. S. Schwartz, “An optimum encoding with minimum longest code and
total number of digits,”Inf. Contr., vol. 7, no. 1, pp. 37–44, Mar. 1964.

[14] L. L. Larmore and T. M. Przytycka, “A fast algorithm for optimal height-
limited alphabetic binary-trees,”SIAM J. Comput., vol. 23, no. 6, pp.
1283–1312, Dec. 1994.

[15] M. B. Baer, “Twenty (or so) questions:D-ary bounded-length Huffman
coding,” preprint available from http://arxiv.org/abs/cs.IT/0602085.

[16] J. Katajainen, A. Moffat, and A. Turpin, “A fast and space-economical
algorithm for length-limited coding,” inProc., Int. Symp. on Algorithms
and Computation, Dec. 1995, p. 1221.

[17] M. Liddell and A. Moffat, “Incremental calculation of optimal length-
restricted codes,” inProc., IEEE Data Compression Conf., Apr. 2–4,
2002, pp. 182–191.

[18] A. Moffat, A. Turpin, and J. Katajainen, “Space-efficient construction
of optimal prefix codes,” inProc., IEEE Data Compression Conf., Mar.
28–30, 1995, pp. 192–202.

[19] A. Turpin and A. Moffat, “Practical length-limited coding for large
alphabets,”The Comput. J., vol. 38, no. 5, pp. 339–347, 1995.

[20] ——, “Efficient implementation of the package-merge paradigm for
generating length-limited codes,” inProc., Computing: The Australasian
Theory Symposium, Jan. 29–30, 1996, pp. 187–195.

[21] L. L. Larmore and T. M. Przytycka, “Parallel construction of trees
with optimal weighted path length,” inProc. 3nd Annual Symposium
on Parallel Algorithms and Architectures, 1991, pp. 71–80.

[22] S. Anily and R. Hassin, “Ranking the best binary trees,”SIAM J.
Comput., vol. 18, no. 5, pp. 882–892, Oct. 1989.

[23] J. Komlos, W. Moser, and T. Nemetz, “On the asymptotic number of
prefix codes,”Mitteilungen aus dem Mathematischen Seminar Giessen,
Heft 165, Coxeter Festschrift, Teil III, pp. 35–48, 1984.

[24] P. Flajolet and H. Prodinger, “Level number sequences for trees,”Disc.
Math., vol. 65, no. 2, pp. 149–156, June 1987.

