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Abstract— Efficient optimal prefix coding has long been ac- decoding. Thus, one might wish to have a minimum codeword
complished via the Huffman algorithm. However, there is sti  sjze of, say/,.i, = 16 bytes and a maximum codeword size of
room for improvement and exploration regarding variants of _ _
the Huffman problem. Length-limited Huffman coding, useful lm?’.‘ |32 k:jytefs (Dd 2)('1” et);pected (t:(_)dt.ewor(.j Ietngtlf:ifor an
for many practical applications, is one such variant, in whth optimal code found unaer gse restric '0n§ IS 100 [ohg.
codes are restricted to the set of codes in which none of the Can be reduced and the algorithm rerun until the proper trade
codewords is longer than a given length/..... Binary length- off between coding speed and compression ratio is found.
limited coding can be done iNO(nlmax) time and O(n) space A similar problem is one of determining opcodes of a
via the widely used Package-Merge algorithm. In this paper micronrocessor designed to use variable-length opcodes, e

the Package-Merge approach is generalized without increasy . B . A
complexity in order to introduce a minimum codeword length, a certain number of bytedX = 256) with a lower limit and

Lmin, t0 allow for objective functions other than the minimization ~@n upper limit to size, e.g., a restriction to opcodes beiig 1
of expected codeword length, and to be applicable to both bary 24, or 32 bits long{,in = 2, Imax = 4). This problem clearly

and nonbinary codes; nonbinary codes were previously addssed  falls within the context considered here, as does the proble
using a slower dynamic programming approach. These extersns ¢ a5sjgning video recorder scheduling codes; these human-

have various applications — including faster decompressio — . _ .
and can be used to solve the problem of finding an optimal code readable decimal coded)(= 10) also have bounds on their

with limited fringe, that is, finding the best code among cods Size, such a,i, = 3 a.ndlmax =38.
with a maximum difference between the longest and shortest Other problems of interest havg,;, = 0 and are thus

codewords. The previously proposed method for solving this |ength limited but have no practical lower bound on length

problem was nonpolynomial time, whereas solving this usinthe 2 1, 396]. Yet other problems have not fixed bounds but a

novel algorithm requires only O(n(lmax — Imin)~) time and O(n) . . o .

space. constraint on the dlﬁerenge between minimum and maximum

codeword length, a quantity referred to as fringe [3, p. 121]
|. INTRODUCTION As previously noted, large fringe has a negative effect ef th
A source emits input symbols drawn from the alphakiet speed of a decoder.

{1,2,...,n}, wheren is an integer. Symbal has probability ~ If we either do not require a minimum or do not require a

pi, thus defining probability vectags = (p1,p2,...,p,). Only maximum, it is easy to find values fdg;, Or inax that do not

possible symbols are considered for coding and these dimjt the problem. As mentioned, settirig;, = 0 results in a

without loss of generality, sorted in decreasing order obpr trivial minimum, as does,,;, = 1. Similarly, setting/,.x = n

bility; thus p; > 0 andp; < p, for everyi > j such that,j € or using the hard upper boud.. = [(n—1)/(D—1)] results

X. Each input symbol is encoded into a codeword composiua trivial maximum value.

of output symbols of theD-ary alphabet{0,1,...,D — 1}. If both minimum and maximum values are trivial, Huffman

The codeword:; corresponding to input symbeélhas length coding [4] yields a prefix code minimizing expected codeword

l;, thus defining length vectdr = (I1,12,...,l,). The code length}". p;l/;. The conditions necessary and sufficient for the

should be a prefix code, i.e., no codewoydhould begin with existence of a prefix code with length vecloare the integer

the entirety of another codeworg. constraint,/; € Z,, and the Kraft (McMillan) inequality [5],

For thebounded-lengtitoding variant of Huffman coding n

introduced here, all codewords must have lengths lying in k(1) & ZD’“ <1 (1)

a given interval [,in.lmax]- Consider an application in the

problem of designing a data codec which is efficient ipinding values fot is sufficient to find a corresponding code.

terms of both compression ratio and coding speed. Moffat|t is not always obvious that we should minimize the

and Turpin proposed a variety of efficient implementationscpected number of questions, p;l; (or, equivalently, the

of prefix encoding and decoding in [1], each involving tablexpected number of questions in excess of the fixst,,

lookups rather than code trees. They noted that the Ien%? pi(li —lmin) ™, Wherez ™ is z if z is positive,0 otherwise).
of the |0ngest codeword should be limited for Computation e genera“ze and |nvest|gate how to minimize the value

efficiency’s sake. Computational efficiency is also impiblg
restricting the overall range of codeword lengths, redytire szcp — linin) )
size of the tables and the expected time of searches redaired



under the above constraints for amenalty functiony(-) modified Package-Merge algorithm. TIAE 7 (lmax — lmin))-
convex and increasing dR. Such an additive measurementime O(n)-space algorithm minimizeheight (that is, max-
of cost is called auasiarithmetic penaltyin this case a convex imum codeword length) among optimal codes (if multiple
guasiarithmetic penalty. optimal codes exist).

One such functiog is () = (6+Imin)*, @ quadratic value  Before presenting an algorithm for optimizing the above
useful in optimizing a communications delay problem [6jroblem, we introduce a notation for codes that generalizes
Another function,p(6) = D!(®F!min) for ¢ > 0, can be used one first presented in [6] and modified in [12].

to minimize the probability of buffer overflow in a queueing The key ideaEach node(i, ) represents both the share of

system [7]. _ the penalty (2) Weigh) and the (scaled) share of the Kraft
Mathematically stating the bounded-length problem, g (1) width) assumed for théth bit of the ith codeword.

Given p=(p1,--,Pn), Pi > 0; By showing that total weight is an increasing function of the
D e{2,3,...}; penalty and that there is a one-to-one correspondence &etwe
convex, monotonically increasing an optimal code and a corresponding optimal nodeset, we
o:Ry - Ry reduce the problem to an efficiently solvable problem, thmCo

Minimize ;3 >, pip(li — lmin) Collector’s problem.

subjectto Y, D7l <14 In order to do this, we first need to make a modification to
li € {lmin, lmin + 1, ..., Imax }- the problem analogous to one Huffman made in his original

nonbinary solution. We must in some cases add a “dummy” in-
put or “dummy” inputs of probability; = 0 to the probability
Jector to assure that the optimal code has the Kraft inetyuali
satisfied with equality, an assumption underlying both the
Huffman algorithm and ours. If we use the minimum number
of dummy inputs needed to makemod (D — 1) = 1, we

Imin))-time O(n)-space algorithm for constructingaoptimal can assume without loss of generallt_y tm) = 1. With this
code. In Section I, we present a brief review of the relevamOd'f'_Cff‘t_'on’ we preserlnodesemmanon. ) .

literature before extending t@-ary codes a notation first Definition 1: A nodeis an ordered pair of integerg, /)
presented in [6]. This notation aids in solving the probleduch thati € {1,....n} andl € {lmin +1,...,lmax}. Call

in question by reformulating it as an instance of tfike the set of all poss_lble node_Ts This set can be arranged in an
ary Coin Collector's problem, presented in the section as & (lmax—lmin) grid, €.9., Fig. 1. The set of nodes, modeset
extension of the original (binary) Coin Collector's proiple Corresponding to input symbal (assigned codeword; with
[8]. An extension of the Package-Merge algorithm solves thengthl) is the set of the first; — i, nodes of column,
problem; we introduce the reduction and resulting alganith  that is,m(i) = {(j,1) [ j =i, | € {lmin +1,...,1;}}. The
Section I1I. An application to a previously proposed prable Nodeset corresponding to length vectois 7(1) = U, m(i);

Note that we need not assume that probabilitiesum to1;
they could instead be arbitrary positive weights.

Given a finiten-symbol input alphabet with an associate
probability vectorp, a D-symbol output alphabet with code-
words of lengths[lin, lmax] allowed, and a constant-time
calculable penalty functiop, we describe arO(n(lpmax —

involving tree fringe is discussed in Section IV. this corresponds to a set af codewords, a code. Thus, in
Fig. 1, the dashed line surrounds a nodeset corresponding to
Il. PRELIMINARIES 1=(1,2,2,2,2,2,2). We say a nodé¢i, ) haswidth p(i, 1) £
Reviewing how the problem in question differs from binaryp~ andweight 1(i, 1) £ p;o(l — lmin) — Pio(l — lmin — 1),
Huffman coding: as shown in the example in Fig. 1. Note thatyfl) = I,
1) It can be nonbinary, a case considered by Huffman i) = pi.
his original paper [4]; Given valid nodesetN C I, it is straightforward to find

2) There is a maximum codeword length, a restrictioffie corresponding length vector and, if it satisfies the Kraf
previously considered, e.g., [9] A (n3l,.x log D) time  inequality, a code.
[10] and O(n?log D) space, but solved efficiently only We find an optimal nodeset using theary Coin Collector’s
for binary coding, e.g., [8] ifD(nima.x) time O(n) space problem. LetDZ denote the set of all integer powers of a
and most efficiently in [11]; fixed integerD > 1. The Coin Collector's problem of size

3) There is a minimum codeword length, a novel restriconsiders “coins” indexed by< {1,2,..., m}. Each coin has
tion; a width, p; € DZ; one can think of width as coin face value,

4) The penalty can be nonlinear, a modification previously.g., p; = 0.25 = 272 for a quarter dollar (25 cents). Each
considered, but only for binary coding, e.g., [12]. coin also has a weighjy; € R. The final problem parameter

The minimum size constraint on codeword length requirés total width, denotegh... The problem is then:

a relatively simple change of solution range to [8]. The rienb

nary coding generalization is a bit more involved; it regair Minimize (pcq1,...m}r  Doicp Mi
first modifying the Package-Merge algorithm to allow for an subject to Y icB Pi = Prot 3
arbitrary numerical base (binary, ternary, etc.), then ifiyod where m € Zy, pu; €R (3)

the coding problem to allow for a provable reduction to the pi € D% pioy € Ry



We thus wish to choose coins with total widtk,, such that version, where the package is given a low index so that,
their total weight is as small as possible. This problem h#s“repackaged,” this occurs after all singular or previlyus

a linear-time solution given sorted inputs; this solutioasw packaged items of identical weight and width):'lfe S, then
found for D = 2 in [8] and is found forD > 2 here. CC(Z, ptot) = S\{#'} UP*; otherwise,CC(Z, ptot) = S.

Let: € {1,...,m} denote both the index of a coin and the Theorem 1:If an optimal solution to the Coin Collector’s
coin itself, and letZ represent then items along with their problem exists, the above recursive (Package-Merge) algo-
weights and widths. The optimal solution, a function of kotaithm will terminate with an optimal solution.
width piot and itemsZ, is denotedCC(Z, piot) (the optimal Proof: Using induction on the number of input items,
coin collection forZ and p:.). Note that, due to ties, this while the basis is trivially correct, each inductive castuees
need not be a unique solution, but the algorithm proposesl héie number of items by at least one. The inductive hypothesis
is deterministic; that is, it finds one specific solution, mucon p;,; > 0 andZ # () is that the algorithm is correct for
like bottom-merge Huffman coding [13] or the correspondingny problem instance with fewer input items than instance
length-limited problem [12], [14] (Z, prot)-

Because we only consider cases in which a solution existsif p* > p,.. > 0, or if Z = () and pyo; # 0, then there is
Prot = WPpow TOr SOME ppow € D% andw € Z,. Here, no solution to the problem, contrary to our assumption. Thus
assumingt > 0, ppow andw are the unique pair of a powerall feasible cases are covered by those given in the proeedur
of D and an integer that is not a multiple &f, respectively, Case 1 indicates that the solution must contain at least one
which, multiplied, formpo. If piot = 0, w and p,ow are not element (item or package) of width*. These must include

used. Note thap,., need not be an integer. the minimum weight item inZ*, since otherwise we could
substitute one of the items with this “first” item and achieve
Algorithm variables improvement. Case 2 indicates that the solution must contai
At any point in the algorithm, given nontrividl and po1, We  a number of elements of width* that is a multiple ofD. If
use the following definitions: this number i9, none of the items irP* are in the solution.
Remainder If it is not, then they all are. Thus, iP* = (), the number is
ppow =  the uniquer € D” 0, and we have Case 2a. If not, we may “package” the items,
such that?et € Z\DZ considering the replaced package as one item, as in Case 2b.
Minimum width Thus the inductive hypothesis holds. ]
p* £ mingez p; (€ DP) The algorithm can be performed in linear time and space,
Small width set as with the binary version [8].
* JAY . *
I = Hilp= ) I1l. A GENERAL ALGORITHM
“First” item

Theorem 2:The solution N of the Package-Merge algo-
rithm for Z = I and

5k

7

(1>

arg min;cz« 4
(ties broken w/highest index)

. lmi
“First” package _n— Do
P such that Pt =71
i} Pl = ?’ has a corresponding length vecid} such thatNv = 5(I"V)
P 77; 5 §*’ P |75 > D and p(N) = ming 3, pip(li — lmin) — ©(0) 3=, ps-
0 2I\P, {I*I =D A formal proof can be found in the full version at [15]. The

idea is to show that, if there is g, ) € N with [ € [l;nin +

2, lmax) Such that(i,! — 1) € I\ N, one can strictly decrease
where DZ denotes integer multiples aD and P < Z*\P  the penalty by substituting iter(i,! — 1) for a set of items
denotes that, for all € P andj € Z*\ P, p; < p;. Then the including (,7), showing the suboptimality oN. Conversely,

(ties broken w/highest indices)

following is a recursive description of the algorithm: if there is no such, ), optimal N corresponds to an optimal

length vector.

Recursive D-ary Package-Merge Procedure Because the Coin Collector’s problem is linear in time and
Basis. piot = 0: CC(Z, pror) = 0. space — same-width inputs are presorted by weight, nunerica
Case 1.p* = ppow and I # (: CC(Z,pot) = operations and comparisons are constant time — the overall

CC(Z\{i*}, pros — p*) U {i*}. algorithm finds an optimal code B(|Z]) = O(n(lmax—lmin))

Case 2a,p" < ppow, Z # 0, and |Z*| < D: CC(Z, prot) = time and space. Space complexity, however, can be lessened.

CC(Z\Z%, prot)- This is because the algorithm output is a monotonic nodeset:

Case 2b.p* < pyow, Z # 0, and |Z*| > D: Createi’, a  Definition 2: A monotonicnodeset,N, is one with the
new item with weightu;y = >, 5. p; and widthp = Dp*.  following properties:
This new item is thus a combined item, package formed
by combining theD least weighted items of width*. Let (,)EN=(i+11)eN fori<n (4)
S = CC(Z\P*U{i'}, ptot) (the optimization of the packaged (4,) e N=(i,]—1)e N forl>lpn+1. (5



1 (level) } !

wu(7,4) = 5pr

i (input symbol)

Fig. 1. The set of nodes with widths {p(i, 1)} and weights{u(i,1)} for o(6) = 6%, n =7, D = 3, liin = 1, lmax = 4

In other words, a nodeset is monotonic if and only if it correattributes of the optimal nodeséf. Thus, at the end of this
sponds to a length vectdrwith lengths sorted in increasingfirst run, we know the value fon, £ v(N), and we can
order; this definition is equivalent to that given in [8]. considerN as the disjoint union of four sets, shown in Fig. 2:

While not all optimal codes are monotonic, using the 1) A = nodes inN N I, with indexes in[1,n — n,],
aforementioned tie-breaking techniques, the algorithmags 2) B = nodes inN N I, with indexes in[n — n, + 1,7,
results in a monotonic code, one that has minimum maximum3) I' = nodes inN N I,
length among all monotonic optimal codes. Examples of 4) A = nodes inV N I;.
monotonic nodesets include the sets of nodes enclosed
dashed lines in Fig. 1 and Fig. 2. In the latter case; 21
Do agdlmax ‘ 8,930pmt =5, BB ZH 1 ) X [lanim + 1, lonia — 1] @nd T = [ — 1, + 1, 1] % {lania }-

In [8], monotonicity allows trading off a constant factorNOte then thap(B) = (n,))(D " — D1 7twe) /(D —1) and_

Lo : . I') = n, D~'mia, Thus we need merely to recompute which
of time for drastically reduced space complexity for Iengtho( . .
des are id and in A.

limited binary codes. We extend this to the bounded—leng%) .
problem. Note that the total width of items that are each IeS%BecauseA is a subset ofly;, p(4) = Y(N) andp(4) =
than or equal to widthp is less than2np. Thus, when we * N_)__p(B)_.p(F)_p(A)' Given their respective widthsl is
are processing items and packages of widtfiewer than2n a r.n|n|m<'_;1I .we|ght .SUbset di, n—n,] X [lmin+1, lmia — 1] and
packages are kept in memory. The key idea in reducing sp $a m|_n|mal weight sgbgetqm—n,ntl,n]x [lmidfl’ bmas]. .
complexity is to keep only four attributes of each package i ese will be monotonic if the overall nodeset is monotonic.
memory instead of the full contents. In this manner, we u € npdes at each level o{ and A can thus be found by
O(n) space while retaining enough information to reconstrutcUrsve Pa"S to the_ algqnthm. This a_pproa(_:h uses Grly)
the optimal nodeset in algorithmic postprocessing. space while preserving time complexity as in [8]'_

Package attributes allow us to divide the problem into two There are changes we can make to the algorithm that, for

subproblems with total complexity that is at most half tht F€rtain inputs, will result in even better performance. For
the original problem. Define example, iflh.x ~ logpn, then, rather than minimizing

the weight of nodes of a certain total width, it is easier to
Lig 2 F(lmax + Lo + 1)J . m_ax_imize .weight gnd find the complementary set of nodes.
Similarly, if most input symbols have one of a handful of

For each packags, we retain only the following attributes: Probability values, one can consider this and simplify etle

I%/e to the monotonicity ofV, it is clear thatB = [n — n, +

1) u(S) 23, (3, 1) tions. These and othgr similar optimizations have been done
AOUPEON (hes '71 the past for the special cagéd) = 8, I, = 0, D = 2 [16]—
) P(5) = Xnes (1) [20], though we will not address or extend such improvements
3) v(9) éA [S N Iidl here.
4) ¥(5) = Z(i-,l)esmm plis1) Note also that there are cases in which we can find a better
wherely; = {(i,1) | I > lmia} and Inia = {(5,1) | I = lmia}. upper bound for codeword length thap., or a better lower
We also defind, = {(i,1) | I < lmia}- bound thani,;,. In such cases, complexity is accordingly

With only these parameters, the “first run” of the algorithmeduced, and, whef,, ., is effectively trivial (e.g.,lnmax =
takes O(n) space. The output of this run is the package — 1), and the Package-Merge approach can be replaced
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by conventional (linear-time) Huffman coding approachesis]
Likewise, wheny(d) = § and lyax — lmin 1S N0t O(log n),

an approach similar to that of [21] as applied in [11] ha§6]
better asymptotic performance. These alternative appsesac [7]
are omitted due to space and can be found at [15].

(8]

An important problem that can be solved with the tech-
nigques in this paper is that of finding an optimal code giverli9
an upper bound on fringe, the difference between minimupy;
and maximum codeword length; such a problem is proposed
in [3, p. 121], where it is suggested that if there are 1 [11]
codes better than the best code with fringe at mhsbne
can find thisb-best code with the)(bn?)-time algorithm in
[22, pp. 890-891], thus solving the fringe-limited problen{lzl
However, this presumes we know an upper boundfoefore |13
running this algorithm. More importantly, if a probability
vector is far from uniform,b can be very large, since thell4
number of viable code trees §&(1.794 ...™) [23], [24]. Thus
this is a poor approach in general. Instead, we can use thd
aforementioned algorithms for finding the optimal bounde?l—6]
length code with codeword lengths restrictedito- d, '] for
eachl’ € {[logp n|, [logpn|+1,..., [logp n] +d}, keeping
the best of these codes; this covers all feasible casesnofefri 17]
upper bounded byi. (Here we again assume, without loss of
generality, thath mod (D — 1) = 1.) The overall procedure [18]
thus has time complexit®)(nd?) andO(n) space complexity.

IV. FRINGE-LIMITED PREFIX CODING
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