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Abstract— This paper presents new lower and upper bounds The weights are the probabilities (i.ev(i) = p(i)), and, in
for the optimal compression of binary prefix codes in terms of fact, we will refer to the problem inputs gs(i)} for certain

the most probable input symbol, where compression efficierycis At ; ; ; _ :
determined by the nonlinear codeword length objective of mii- gelrflefrallza;uc;nz I.n V\;hICh thefllr StEIEZGX zf(z_),tneed ?r?t bé.’ .
mizing maximum pointwise redundancy. This objective relaes to ormulated n terms oft, the constraints on the mini-

both universal modeling and Shannon coding, and these bouisd Mization are the integer constraint (i.e., that codes mesifb
are tight throughout the interval. The upper bounds also apgy integer length) and the Kraft inequality [1]; that is, the eé

to a related objective, that of d" exponential redundancy. allowable codeword length vectors is
. INTRODUCTION " ,
: . _ . L, 217" suchthat) 271 <15,
A lossless binary prefix coding problem takes a probability { + ; -

mass functiorp(i), defined for alli in the input alphabe#’, ) ) ]
and finds a binary code fat. Without loss of generality, Drmota and Szpankowski [2] investigated a problem
which, instead of minimizing average redundarieyl, p) =

we consider am-item source emitting symbols drawn from N ) A ; NI
the alphabett = {1,2,....n} where{p(i)} is the sequence 2-icx P(1)(1(i) +1gp(7)), minimizes maximum pointwise re-
of probabilities for possible symbolg() > 0 for i e x dundancy . . , ,
and )., p(i) = 1) in monotonically nonincreasing order R(l,p) = I}é%i‘(l(z) +1gp(7))-
(p(i) > p(y) for i < j). The source symbols are coded int
binary codewords. The codeword:) € {0,1}* in codec,
corresponding to input symbal, has lengthi(i), defining
length vectorl.

The goal of the traditional coding problem is to find a prefi
code minimizing expected codeword lengthy _ . p()I(i), or,
equivalently, minimizing average redundancy

?Qelated to a universal modeling problem [3, p. 176], the idea
here is that, given a symbol to be compressed, we wish the
length of the compressed dat#{) to exceed self-information
)((— lgp(i)) by as little as possible, and thus consider the
worst case in this regard. This naturally relates to Shannon
coding, as a code with lengtlis- 1g p(¢)| would never exceed
self-information by more thanl bit. Any solution, then,
R(l,p) £ Zp(i)g(i) —H(p) = Zp(i)(l(i) +1gp(i)) would necessarily have no codeword longer than its Shannon
iex iex code counterpart. Indeed, Drmota and Szpankowski used a

_ ) ) .~ Qeneralization of Shannon coding to solve the problem, whic
where i is — >, » p(i) lgp(i), Shannon entropy, ang =  _,isfies
log,. A prefix code is a code for which no codeword begins 0< R*(I°",p) < 1.

with a sequence that also comprises the whole of a second
codeword. This problem is equivalent to finding a minimum#/e will improve the bounds, givep(1), for minimum maxi-

weight external path mum pointwise redundancy and discuss the related issue of th
o length of the most likely codeword in these coding problems.
Zw(’)l(’) These bounds are the first of their kind for this objective,

e analogous to those for traditional Huffman coding [4]-[@Pa

among all rooted binary trees, due to the fact that eveogher nonlinear codes [10]-[12].

prefix code can be represented as a binary tree. In this tre6he bounds are derived using an alternative solution to this
representation, each edge from a parent node to a child ngdeblem, a variation of Huffman coding [13] derived fromtha
is labeled0 (left) or 1 (right), with at most one of each type ofin [14]. In order to explain this variation, we first revieweth
edge per parent node. A leaf is a node without children; thituffman algorithm and some of the ways in which it can be
corresponds to a codeword, and the codeword is determimaddified.

by the path from the root to the leaf. Thus, for example, a leaflt is well known that the Huffman algorithm [15] finds a
that is the right-edgel] child of a left-edge () child of a left- code minimizing average redundancy. The Huffman algorithm
edge () child of the root will correspond to codewofi)1l. is a greedy algorithm built on the observation that the two
Leaf depth (distance from the root) is thus codeword lengtleast likely symbols will have the same length and can thus



be considered siblings in the coding tree. A reduction cas thHere we assume that > 0, althoughd € (—1,0) is also a
be made in which the two symbols with weights:) andw(j) valid problem. Clearly, this can be solved via reductionp (
can be considered as one with combined weight) +w(j), by assigning: = lg d and using input weighta (i) = p(i)'*+.
and the codeword of the combined item determines all but theMinimizing maximum redundancy is equivalent to minimiz-
last bit of each of the items combined, which are differértia ing d" exponential redundancy fat — co. This observation
by this last bit. This reduction continues until there is @een  leads to a Huffman-like solution with the combination rule
left, and, assigning this item the null string, a code is dafin . ) . .

for all input symbols. In the corresponding optimal codefre Fw(i), w(g)) = 2max(uw(i), w(j)) (3)
the i" leaf corresponds to the codeword of teinput item, as in [13].
and thus has weight(i), whereas the weight of parent nodes In the next section, we find tight exhaustive bounds for the
are determined by the combined weight of the correspondinglues of optimalR*(l,p) and corresponding(1) in terms
merged item. Van Leeuwen gave an implementation of tlé p(1), then find how we can extend these to exhaustive —
Huffman algorithm that can be accomplished in linear timeut not tight — bounds for optimak?(Z, p).

given sorted probabilities [16]. Shannon [17] had previpus

shown that an optimdP™ must satisfy II. BOUNDS ON THEREDUNDANCY PROBLEMS

oot _ o It is useful to come up with bounds on the performance of
H(p) < p(i)I°"(i) < H(p) +1,1..,0 < RI°™,p) < 1. an optimal code, often in terms of the most probable symbol,
iE€X p(1). In minimizing average redundancy, such bounds are
Simple changes to the Huffman algorithm solve several reften referred to as “redundancy bounds” because they are in
lated coding problems which optimize for different objees. terms of this average redundand¥(l,p) = >, p(i)l(i) —
Generalized versions of the Huffman algorithm have beei(p). The simplest bounds for the optimal solution to the
considered by many authors [18]-[21]. These generali@atiominimum maximum pointwise redundancy problem
change the combining rule; instead of replacing iteérasd j

* é . . .
with an item of weightu(i) +w(j), the generalized algorithm Ripe(p) = min max (I(i) +1gp(i))

lel, icXx
replaces them with an item of weiglitw(i), w(j)) for some .., o combined with those for the average redundancy
function f. Thus the weight of a combined item (a nodeE oblem:
no longer need be equal to the sum of the probabilities f ' 0 < Rope(p) < RE.(p) < 1 ()
= op = opt

the items merged to create it (the sum of the leaves of the

corresponding subtree). This has the result that the sumvdiere R,,.(p) is the average redundancy of the average

weights in a reduced problem need not heunlike in the redundancy-optimal code. The average redundancy case is a

original Huffman algorithm. In particular, the weight ofeth lower bound because the maximuiR*(Z,p)) of the values

root, w00, Need not bel. However, we continue to assume(l(z) + 1g p(i)) that average to a quantity?(l, p)) can be no

that the sum ofy(-), the inputs before reduction, will alwaysless than the average (a fact that holds forladind p). The

be 1. upper bound is found similarly to the average redundanag;cas
One such variation of the Huffman algorithm was usede can note that Shannon cotfg:) £ [—1gp(i)] results in

in Humblet's dissertation [22] for a queueing applicatio®?  (p) < R*(lg,p) =max;ex ([—1gp(i)] +1gp(i)) < 1.

(and further discussed in [18], [19], [23]). The problemsthi A few observations can be used to find a series of improved

variation solves is as follows: Given probability mass fime lower and upper bounds on optimum maximum pointwise

p anda > 1, find a code minimizing redundancy based on (4):
N Lemma 1:Suppose we apply (3) to find a Huffman-like
a 1(3)
La(p,1) = log, z;(p(l)a ' (1) code tree in order to minimize maximum pointwise redun-
1€

_ _ ) ) “dancy. Then the following holds:

This growing exponential average problem is solved by using 1) Items are always merged by nondecreasing weight.

combining rule 2) The weight of the rootv,,. Of the coding tree deter-

F(w(@),w(5)) = aw(i) + aw(j). 2 mines the maximum pointwise redundandy,(l,p) =

1gU)root-

3) The total probability of any subtree is no greater than
the total weight of the subtree.

4) If p(1) < 2p(n — 1), then a minimum maximum

This problem was proposed (without solution) by Campbell
[24], who later noted that this formulation can be extended t
decaying exponential bagec (0, 1) [25]; Humblet noted that

the Huffman combining method (2) finds the optimal code for pointwise redundancy code can be represented by a

(1) with a € (0,1) as well [23]. lete tree. that is. a t i | td
Another variation, proposed in [26] and solved for in [19], ;?];nﬁgen% cr)eni'/ (Wailth|sz,:a re2e_\l/}/;) _ela)lves at dejpghn |
iceX -

can be calledd™ exponential redundancy [13], and is the

minimization of the following: Proof: We use an inductive proof in which base cases

) of sizes1 and2 are trivial, and we use weights, instead of
RU(l,p) & y 1g2p(i)l+d2dl(i). probablhtleSp_, to emphasize that the_ sums of weights r_1eed
iex not necessarily add up tb. Assume first that all properties



here are true for trees of size— 1 and smaller. We wish to this lemma. Ifn — 1 is a power of two, they end up on level
show that they are true for trees of size lg(n—1) = |lgn], also satisfying the lemma. Otherwise, there
The first property is true becausé¢(w(i),w(j)) = is at least one item ending up at levggn] = [lg(n — 1)]
2max(w(i), w(j)) > w(i) for anyi andy; thatis, a compound near the head of the queue, followed by the remaining items,
item always has greater weight than either of the itemghich end up at levellgn| = |lg(n — 1)]. In any case, all
combined to form it. Thus, after the first two weights areroperties of the lemma are satisfied foitems, and thus for
combined, all remaining weights, including the compounainy number of items. [ ]
weight, are no less than either of the two original weights. We can now present the improved redundancy bounds.
Consider the second property; after merging the two leastTheorem 1:For any distribution in whichp(1) > 2/3,
weighted ofn (possibly merged) items, the property holds fof?,.(p) = 1 +1gp(1). If p(1) € [0.5,2/3), then R (p) €
the resultingn — 1 items. For then — 2 untouched items, [1+1gp(1),2+1g(1—p(1))) and these bounds are tight. Define
1(i) + lgw(i) remains the same. For the two merged items, = [—lgp(1)], which, forp(1) € (0,0.5), is greater tharl.
let /(n — 1) andw(n — 1) denote the maximum depth/weight~or this range the following bounds fat;, (p) are tight:
pair for itemn — 1 andl(n) andw(n) the pair forn. If I’ and

w’ denote the depth/weight pair of the combined item, then (1) Rop (p)

U'+lgw’ =1(n)—1+1g(2 max(w(n—1),w(n))) = max(l(n— 1 1 1-p(1
1)+lgw(n—1),1(n)+1gw(n)), so the two trees have identical [2“ 2“1) [/\ +lgp(),1+1e 1*2**)

maximum redundancy, which is equallfow, . since the root [%1_1’ 2A2+1) [lg 11__211&131 1+1g tgg))

node is of deptld. Consider, for exampley = (0.5,0.3,0.2),

which has optimal codewords with lengths= (1,2, 2). The [2&1, 2371) [1g AP A+ 1gp(1)}

first combined pair ha$ + lgw’ = 1 4+ 1g0.6 = max(2 +

1g0.3,2 4+ 1g0.2) = max({(2) + lgp(2),1(3) + lgp(3)). This

value is identical to that of the maximum redundangy.,2 = Proof: The key here is generalizing the simple bounds

1g Wroot - of (4)

For the third property, the first combined pair yields a weigh
that is no less than the combined probabilities. Thus, viaUpper bound Let us define what we call dirst-order
induction, the total probability of any (sub)tree is no deza Shannon code
than the weight of the (sub)tree. ) { A& [—lgp(1)], i=1

In order to show the final property, first note that (p(?) = _ o (1=2"* -
S iex 2719 =1 for any tree created using the Huffman-like [ le (p(l) (1*”(1))ﬂ » {23 n)
procedure, since all internal nodes have two children. Nolhis code, previously presented in the context of findingr-
think of the procedure as starting with a queue of input item&ge redundancy bounds giveany probability [28], improves
ordered by nondecreasing weight from head to tail. Aftetpon the original “zero-order” Shannon colfeby taking the
merging two items, obtained from the head of the queue, in@ngth of the first codeword into account when designing the
one compound item, that item is placed back into the quelgst of the code. The code satisfies the Kraft inequality, and
as one item, but not necessarily at the tail; an item is plac#ls, as a valid code, its redundancy is an upper bound on the
such that its weight is no smaller than any item ahead of it anedundancy of an optimal code. Note that
is smaller than any item behind it. In keeping items ordered, max;>1(1(d) + g p(i)

this results in an optimal coding tree. A variant of this nueth B } o —1=p() lo p(i
can be used for linear-time coding [13]. = maXi>1 ({g p(i)(1—2**)w + gp(z))
In this case, we show not only that an optimal complete <l+lg %@.

tree exists, but that, given anritem tree, all items that finish If p(1) € [2/(2* + 1),1/22-1), the maximum pointwise re-

at level [lgn] appear closer to the head of the queue th . . - -~
any item at levellgn] — 1 (if any), using a similar approach%PEndancy of the first item is no less tha ls((1-p(1))/(1

A * x (71 o :
to the proof of Lemma 2 in [27]. Suppose this is true fo%* )g’;‘id;lzﬁ"f’;(ﬁ)li? (((li”f) Zl)/\);—(lig;i(ég());hermse,
every case witm — 1 items forn > 2, that is, that all nodes O‘F%é?ti_htnesg’ gf the u ger boupnd M5, 1) is sho'wn via
are at levelglg(n —1)] or [lg(n — 1)], with the latter items 9 PP ’
closer to the head of the queue than the former. Consider now p=(p(1),1—p(1) — € ¢

a case withn nodes. The first step of coding is to Merge . hich the bound is achieved /3, 1) for anye € (0, (1—

tW(()j n(;dtehs, resulgl_ng(;n_ta combined item thﬁt is placedta('; tgz' 19)/2] and approached iff.5,2/3) ase | 0. If A > 1 and
enad of tThe combined-ilem queue, as we have asserte ) € [2/(2* +1),1/2*~1), use probability mass function

p(1) < 2p(n — 1) = 2max(p(n — 1), p(n)). Because it is at *
the end of the queue in the — 1 case, this combined node

is at level|lg(n — 1)] in the final tree, and its children are at o= | p0) 1-pd)—e 1-p(1)—c

level 1 + [lg(n — 1)] = [lgn]. If n is a power of two, the o2d—2 7T A9
remaining items end up on leveln = [lg(n—1)], satisfying A9

€




€)/(2* = 2), andp(n — 1) > p(n). Similarly, p(1) < 1/2*~1
assures thap(l) > p(2), so the probability mass function
is monotonic. Sincep(n — 1) > p(1), by Lemma 1, an =o¢f

= \ 1

0.7

where 1“\\\F\\f\ . . e
ec (0,1 —p(1)2*1h). oo} RN
Becausep(l) > 2/(2* + 1), 1 — p(1)22~1 < (1 — p(1) — o8} . K

optimal code for this probability mass function i) = A & .| v
for all ¢, achievingR*(l,p) = A+ 1gp(1), with item 1 having \\/
the maximum pointwise redundancy. 04
This leaves onlyp(1) € [1/2*,2/(2* + 1)), for which we 0sl
consider
0.2
1—p(1)—¢ 1—p(1)—c¢ 0l
= 1 e
p p( )7 2)\ _ 1 ) ) 2A _ 1 76 . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22 1 p(l)

wheree | 0. This is a monotonic probability mass function forFig. 1. Tight bounds on minimum maximum pointwise redungamciud-
sufficiently smalle, for which we also have(1) < 2p(n—1), ing achievable upper bounds (solid), approachable uppends (dashed),
so (again from Lemma 1) this results in optimal code whe hievable lower bounds (dotted), and fully determinedeslfforp(1) > 2/3

. . (dot-dashed).
l(t)=Aforie{1,2,...,n—2}andli(n—1) =l(n) = A\+1,
and thus the bound is approached with itema 1 having the

maximum pointwise redundancy. Note that the bounds of (4) are identical to the tight bounds

) ) , at powers of two. In addition, the tight bounds clearly agoto
Lower b(_)und Consider all optimal COdef‘ W'ti(l) ~H opand1 asp(1l) | 0. This behavior is in stark contrast with

for some fixedu € {1,2,...}. If p(1) = % R (?’p) = average redundancy, for which bounds get closer, not furthe

l(l? +lgp(l) = ft lgp(L). If p(1) < 27*, consider the apart, due to Gallager’s redundancy bound [4] Ropi(p) <

We!ghts gt level. (|_.e., 1 edges below the root). One of these (1) + 0.086 — which cannot be significantly improved for

weights isp(1), while the rest are known to sumto a numb §mallp(1) [9]. Moreover, approaching, the upper and lower

no less thart —p(1). Thu*s at least one weight must be at leag, ;45 on minimum average redundancy coding converge but

(1-p(1))/(2"=1) andR* (L, p) = p+lg((1-p(1))/(2"~1)).  hover merge, whereas the minimum maximum redundancy

Thus, bounds are identical fop(1) > 2/3.

1-p(1) In addition to finding redundancy bounds in termsp¢f),

o — 1 > it is also often useful to find bounds on the behaviori (df)

in terms ofp(1), as was done for optimal average redundancy

R, (p) > p+ lg max <p(1),

for I(1) = u, and, sinceu can be any positive integer, in [29]
R - . 1 1 1—p(1) Theorem 2:Any optimal code for probability mass function
opt(P) = w8 ) p + lgmax | p(1), o _1 p, wherep(1) > 277, must havel(1) < v. This bound is

tight, in the sense that, for(1) < 27", one can always find a

which is equivalent to the bounds provided. probability mass function with(1) > ». Conversely, ifp(1) <

Forp(1) € [1/(2#** —1),1/2") for somey, consider 1/(2 — 1), there is an optimal code with{1) > v, and this
bound is also tight.

1—p(1) 1—p(1) Proof: Supposep(1) > 27% andi(1) > 1 + v. Then

p(1), outl _ 9" i outl 9 |- Ry, (p) = R*(l,p) > I(1) +1gp(1) > 1, contradicting the

simple bounds of (4). Thuk1) < v.

For tightness of the bound, supposgl) € (277~1,27V)
By Lemma 1, this will have a complete coding tree and thugd considern = 2v+! and

achieve the lower bound for this range £ ;. + 1). Similarly

p=|p),27v ... 27v 2 (1) | .
p(1),27+7 1 27T 9Tk (1) ~

2012

2u+1_2

If (1) < v, then, by the Kraft inequality, one é{2) through
has a fixed-length optimal coding tree fop(l) € I(n— 1) must exceed. However, this contradicts the simple
[1/2#,1/(2* — 1)), achieving the lower bound for this rangebounds of (4). Forp(1) = 27~!, a uniform distribution
(A = p). B results inl(1) = v 4 1. Thus, since these two results hold



for any v, this extends to alp(1) < 27“~1, and this bound is
tight.

Supposen(1) < 1/(2¥ — 1) and consider an optimal length
distribution withI(1) < v. Consider the weights of the nodes [?]
of the corresponding code tree at lev¢l). One of these
weights isp(1), while the rest are known to sum to a number3]
no less tharl —p(1). Thus there is one node of at least Weight[4

1-p(1) 1-p(1)

(1) — 1 — 2U(1) —2U(1)+1-v
and thus, taking the logarithm and addif{d) to the right-
hand side,

(1]

(5]
(6]

1 —p(1)

v—1 1’

Note thatl(1) + 1 +1gp(1) <v +1gp(l) <v —1+1g((1 —
p(1))/(2v~1—1)), a direct consequence pf1) < 1/(2V —1).
Thus, if we replace this code with one for whi¢fl) = v,
the code is still optimal. The tightness of the bound is gasil
seen by applying Lemma 1 to distributions of the form [10]

R*(lL,p)>v—1+Ig 7

[11]
1—p(1)
TR
2V -2
for p(1) € (1/(2 —1),1/27~1). This results in(1) = v — 1
and thusRiy(p) = v +1g(1 — p(1)) — 1g(2” — 2), which no
code withi(1) > v — 1 could achieve. m 4
In particular, ifp(1) > 0.5, I(1) = 1, while if I(1) < 1/3, [15]
there is an optimal code with{1) > 1.
We now briefly address th@" exponential redundancy
problem. Recall that this is the minimization of

1 : i
Ri(p,0) & Slgy_p(i) 120,
ieX

1-p(1)

1
p(), 2 2

[12]

[13]

[16]

[17]
(18]
This can be rewritten as
1 N
d _ N od(1(1)+1g p(i))
Ri(p0) = 518> p(i)2 ertd)),
ieX [20]
A straightforward application of Lyapunov’'s inequalityrfo 21]
moments yieldsk¢(p,1) < R4(p,1) for ¢ < d, which, taking
limits to 0 and oo, results in
0< R(p,1) < RY(p,1) < R*(p,1) < 1
for any validp, d > 0, andl, resulting in an extension of (4),

0 < Ropi(p) < RE,(p) < Rii(p) < 1
where R¢

opt
opt(p) is the optimald™™ exponential redundancy, an2s
improvement on the bounds found in [13]. This implies that
this problem can be bounded in terms of the most like
symbol using the upper bounds of Theorem 1 and the lower
bounds of average redundancy (Huffman) coding [7]: [27]

Ropt > € — (1= p(1))1g(2° — 1) = H(p(1),1 - p(1))

where .
1—2pm—1
£= {lg (D —‘

[19]

[22]

[23

[24]

(28]

[29]
1— 251

for p(1) € (0,1) (and, recallH(z) = — >, z(i) Ig z(1)).
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