
On the Redundancy of Huffman Codes with

Exponential Objectives

Michael B. Baer

Vista Research

4 Lower Ragsdale Drive, Suite 220

Monterey, CA, USA

Email: calbear@ieee.org

Abstract— We present new lower and upper bounds for the
compression rate of binary prefix codes over memoryless sources
optimized according to two related exponential codeword length
objectives. The objectives explored here are exponential-average
length and exponential-average redundancy. The first of these
relates to various problems involving queueing, uncertainty, and
lossless communications. It can be reduced to the second, which
has properties more amenable to analysis. These bounds, some
of which are tight, are in terms of a form of entropy and/or the
probability of an input symbol, improving on recently discovered
bounds of similar form. We also observe related properties of
optimal codes over the exponential-average redundancy utility.

I. INTRODUCTION

Among Shannon’s many observations in the seminal paper

on information theory [1] was that, by increasing block size,

the compression rate of a block code for a memoryless

source can get arbitrarily close to the source entropy rate. In

particular, given a block of Shannon entropy H bits, prefix

coding methods such as Huffman coding can code the block

with an expected length of L bits, where L ∈ [H, H + 1).
If pi ∈ (0, 1) is the probability of the ith item, which has a

codeword of length li, then

L ,
∑

i

pili and H , −
∑

i

pi lg pi

where lg , log2 and the sum is, without loss of generality,

taken over the n possible items. A constant absolute difference

translates into an arbitrarily close-to-entropy compression ratio

as blocks grow in size without bound. The lower bound is

fundamental to the definition of entropy, while the upper bound

is easily seen by observing the suboptimal Shannon code: This

code, that in which an event of probability p is coded into a

codeword of length ⌈− lg p⌉, will always have expected length

less than H + 1, and thus the optimal L < H + 1 as well.

This unit-sized bound holds even for many nonlinear opti-

mization criteria. Such criteria are encountered in a variety of

lossless compression problems in which expected length is no

longer the value to minimize. In particular, consider

La = La(p, l) , loga

∑

i

pia
li . (1)

Minimizing this utility — introduced in [2] — solves several

problems involving avoiding buffer overflow in queueing [3],

compression with uncertainty [4], one-shot communications

[5], and unreliable communications [6]. It is closely related to

Rényi entropy [7]:

Hα(p) ,
1

1 − α
lg
∑

i

pα
i (2)

in the sense that, for α = 1/(1 + lg a),

Hα(p) ≤ Lopt
a < Hα(p) + 1.

Limits define Rényi entropy for 0, 1, and ∞, so that

H0(p) , lim
α↓0

Hα(p) = lg ‖p‖ = lg n

H1(p) , lim
α→1

Hα(p) = −
∑

i

pi lg pi (Shannon entropy)

H∞(p) , lim
α↑∞

Hα(p) = − lg max
i

pi.

Over a constant p, entropy is nonincreasing over α [7].

La is also closely related to exponential-average redun-

dancy or exponential redundancy

Rd(p, l) ,
1

d
lg
∑

i

p1+d
i 2dli =

1

d
lg
∑

i

pi2
d(li+lg pi).

If we substitute d = lg a and

p̂i ,
pα

i
∑

k pα
k

=
pα

i

2(1−α)Hα(p)

we find

Rlg a(p̂, l) =
1

lg a
lg
∑

i

p̂1+lg a
i ali

= loga

∑

i

pia
li − loga

(
∑

i

pα
i

) 1
α

= La(p, l) − Hα(p).

(3)

This transformation — shown in [8] — provides a reduction

from La to Rd, allowing bounds for the former to apply —

with the addition of the entropy term — to the latter.

However, for both the traditional and exponential utilities,

we can improve on the unit-sized bound given the probability

of one of the source events. Improving bounds is useful if

Shannon’s concept of increasing block size no longer applies.

For example, in the case of queueing, increasing block size

makes queue overflow more likely, while in the case of one-

shot communications, there is only one event to encode.



There can also be more practical reasons for not using

increasingly large block codes — e.g., restrictions on coding

or simplicity of computation — so improved bounds have

been looked into in depth in the case of the traditional linear

utility, L = L1. This was first done with the constraint that

the given probability be the most probable of these events [9],

but here, as in some subsequent work [6], [10], [11], we drop

this constraint. Without loss of generality, we call the source

symbols {1, 2, . . . , n} = X (from most to least probable), and

call the symbol with known probability j; that is, pj is known,

but not necessarily j itself.

In traditional linear optimization, upper and lower bounds

for Rd are known such that probability distributions can be

found achieving or approaching these bounds [10], [11]; i.e.,

they are tight. In the exponential cases, [6] took a ↑ ∞ (d ↑
∞) and a ↓ 1 (d ↓ 0), using inequality relations to find not-

necessarily-tight bounds on these problems in terms of tight

bounds for the limit cases. The goal here is to improve the

bounds.

We seek to find an upper bound ωd(pj) and lower bound

od(pj) such that, for every probability distribution p, optimal

codeword lengths l satisfy:

0 ≤ od(pj) ≤ min
l

Rd(p, l) < ωd(pj) ≤ 1

for any j. For such values, (3) results in:

olg a
(

pα̃
j 2(α̃−1)Hα̃(p)

)

≤ Lopt
a (p) − Hα̃(p)

< ωlg a
(

pα̃
j 2(α̃−1)Hα̃(p)

)

where α̃ = 1/(1 + lg a) and Lopt
a (p) denotes the utility for

optimal lengths given p and a. Thus we can restrict ourselves

to exponential redundancy, which is more amenable to the

analysis used here.

The bounds found here are given in the following as

theorems, with Fig. 1 illustrating the bounds. As mentioned,

many prior bounds for the traditional case further assume

that the known probability is the most probable, i.e., j = 1.

Although not assuming this results in a slightly more general

problem, for pj > 0.5, clearly the two are equivalent.

II. APPLICATIONS

A. d > 0 (a > 1)

Most applications of the exponential length utility concern

only a > 1 (d > 0 for the redundancy equivalent). The first

known application, introduced in Humblet’s dissertation [3],

[12], is in a queueing problem originally posed by Jelinek [13].

Codewords coding a random source are temporarily stored in

a finite buffer; these are chosen such that overflow probability

is minimized.

Another application considers a source with uncertain prob-

abilities, one in which we only know that the relative entropy

between the actual probability mass function and p is within

a known bound [4]. A third, more recent application, omitted

in the interest of brevity but described in [6], is a modified

case of the application in the next paragraph.

B. d < 0 (a < 1)

An application for a < 1 involves single-shot communi-

cations with a communication channel having a window of

opportunity of geometrically-distributed length (in bits) [5]. If

the distribution has parameter a, the probability of successful

transmission is

P[success] = aLa(p,l) =

n∑

i=1

pia
li .

Maximizing this is equivalent to minimizing (1). The solution

is trivial for a ≤ 0.5 (d ≤ −1), a case not covered by Rényi

entropy, and thus not applicable here.

III. BOUNDS

The variation of the Huffman algorithm which finds an opti-

mal code for exponential redundancy differs as follows: While

Huffman coding inductively pairs the two lowest probabilities

(weights) wx and wy , combining them into an item weighted

f(wx, wy) , wx + wy , optimizing exponential redundancy

requires the combined item to be weight

fd(wx, wy) ,
(
2dw1+d

x + 2dw1+d
y

) 1
1+d . (4)

The optimality of this is shown in [14] and can illustrated with

an exchange argument (e.g., [15, pp. 124-125] for the linear

case). An exchange argument also inductively illustrates that

such an algorithm, depending on how ties are broken, can

achieve any optimal set of codeword lengths: Clearly the only

optimal code is obtained for n = 2. Let n′ be the smallest n
for which there is a set of {li} that is optimal but cannot be

obtained via the algorithm. Since {li} is optimal, consider the

two smallest probabilities, pn′ and pn′−1. In this optimal code,

two items having these probabilities (although not necessarily

items n′ − 1 and n′) must have the longest codewords and

must have the same codeword lengths. Otherwise, we could

exchange the codeword with a longer codeword corresponding

to a more probable item and improve the utility function,

showing nonoptimality. Merge these two items into one with

probability fd(pn′ , pn′−1), as per the algorithm. Because of

the nature of fd, this is a reduced problem, i.e., an equivalent

optimization to the original problem. This means that there is

a set of lengths optimal for this problem such that all non-

merged items are identical to the corresponding li, while the

merged item is simply one shorter than the longest li. Since we

inductively assumed all optimal length sets could be produced

for n′ − 1, the assumption is verified for all n.

Related observations form the following theorem, similar to

that in [6] for a non-exponential utility:

Theorem 1: Suppose we apply (4) to find a Huffman-

like code tree in order to minimize exponential redundancy

Rd(p, l) for d > −1. Then the following holds for any

optimal l:

1) For d > 0, items are always merged by nondecreasing

weight and the total probability of any subtree is no

greater than the weight of the (root of the) subtree. For



d < 0, the total probability of any subtree is no less than

the weight of the subtree.

2) The weight of the root of the coding tree is wroot =
2Rd(p,l).

3) If p1 ≤ fd(pn−1, pn), then an optimal code can be

represented by a complete tree, that is, a tree with leaves

at depth ⌊lg n⌋ and ⌈lg n⌉ only (with
∑

i 2−li = 1).

Proof: Again we use induction, this time using trivial

base cases of sizes 1 and 2, and assuming the propositions

true for sizes n − 1 and smaller. We assume without loss

of generality that, for size n, items n − 1 and n are the

first to be merged. We use weight terminology (w) instead

of probabilities (p) because reduced problems need not have

weights sum to 1.

The subtree part of the first property considers subtrees of

size n, not necessarily the whole coding tree. All we need to

have a successful reduction to size n − 1 is to show:

fd(wx, wy) =
(
2dw1+d

x + 2dw1+d
y

) 1
1+d (5)

≥ wx + wy (6)

for d > 0, and

fd(wx, wy) ≤ wx + wy (7)

for d ∈ (−1, 0), with equality in either case if and only if

wx = wy . The inequalities are due to the identical property of

the generalized mean in [16, 3.2.4]:

M(t) =

(

1

m

m∑

k=1

at
k

) 1
t

with, in this case, m = 2, a1 = 2wx, a2 = 2wy , and t as

1 + d in (5) (left-hand side of (7)) and 1 on (6) (right-hand

side of (7)).

It immediately follows in the d > 0 case that fd(wx, wy) >
wx. Thus, the first two merged weights of the tree form a

weight no less than either original weight, and all remaining

weights are also no less than those two weights. Call the

resulting lengths l
′
.

To prove the second property, note that, after merging the

aforementioned two least weighted items, we have n − 1
weights, and thus a conforming reduced problem. Call the

combined weight w′
c. Then

wroot = 2Rd(p,l′)

=

(

w′
c
1+d

2(ln−1)d +

n−2∑

i=1

p1+d
i 2lid

) 1
d

=

(

p1+d
n−12

ln−1d + p1+d
n 2lnd +

n−2∑

i=1

p1+d
i 2lid

) 1
d

= 2Rd(p,l)

where the third equality is due to ln−1 = ln and (4).

The third property is shown via the operation of the algo-

rithm from start to finish: First note that
∑

i 2−li = 1 for

any tree created using the Huffman-like procedure, since all

internal nodes have two children. Now think of the procedure

as starting with a priority queue of input items, ordered by

nondecreasing weight from head to tail. After merging two

items, obtained from the head, into one compound item, that

item is placed back into the queue. Since we are using a

priority queue, the merged item is placed such that its weight

is no smaller than any item ahead of it and is smaller than any

item behind it.

In keeping items ordered, we obtain an optimal coding

tree. A first derivative test shows that fd is nondecreasing

on both inputs for any d. Thus merged items are created in

nondecreasing weight. If p1 ≤ fd(pn−1, pn), the first merged

item can be inserted to the tail of the queue; since merged

items are created in nondecreasing weight, subsequent items

are as well. This is a sufficient condition for a complete tree

being optimal [5, Lemma 2].

Next is our main result:

Theorem 2: Suppose we know d > −1 (d 6= 0) and one pj

of probability mass function p for which we want to find the

optimal code l under exponential redundancy. Consider

ωd(pj) = min
λ∈Z+

(

λ +
1

d
lg

(

p1+d
j +

2d(1 − pj)
1+d

(2λ − 1)d

))

(8)

making transitions between λ and λ + 1 at

pλ =

(

1 +

(
(
1 − 2−d

) (
1

(2λ−1)d − 1
(2λ−0.5)d

)−1
) 1

1+d

)−1

and

od(pj) = min
µ∈Z+

(

µ +
1

d
lg

(

p1+d
j +

(1 − p)1+d

(2µ − 1)d

))

with transitions between µ and µ + 1 at

pµ =

(

1 +

(
(
2d − 1

)(
1

(2µ−1)d − 1
(2µ−0.5)d

)−1
) 1

1+d

)−1

.

These improve bounds on the optimal code, and the upper

bound is a strict inequality, in that

0 ≤ od(pj) ≤ Rd(p, l) < ωd(pj) ≤ 1. (9)

The lower bounds are achievable given p1 and the upper

bounds are approachable given p1 ≥ 0.5. Also, for pj < 0.5
and d < 0, there is a secondary upper bound:

Rd(p, l) < max

(

0.5,
1

d
lg
(
p1+d

j 4d + (1 − pj)
1+d2d

)
)

(10)

Proof:



-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
d o
p
t
(p

)

pj

∞

1
2
4

16

−0.5
−1

0−

(a) Upper bounds

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
d o
p
t
(p

)

pj

∞

1
2
4

16

−0.5
−1

0

(b) Lower bounds

Fig. 1. Bounds on optimal Rd
opt(p) given pj over various d (see legends). The thick (dash-dotted) lines correspond to the usual linear redundancy utility

(d → 0), while the uppermost (solid) lines are minimum maximum pointwise redundancy (d → ∞). Lower bounds are tight over all d > −1, while upper
bounds are only tight for minimum maximum pointwise redundancy, for pj ≥ 0.5 if d ∈ (−1,∞), and for (0, πd

0) if d ∈ (−1, 0), where πd
0 as the first

root of the equality of the two terms in the maximization at (10). The tight upper bounds for d < ∞ are approached by p = (pj , 1 − pj − ǫ, ǫ). This also
shows the tightness of the d → −1 bounds of (0, 2 − lg 3) ≈ (0, 0.415), which, although calculated using (9), are not dependent on pj .

1) Lower bound: The lower bound calculation is:

Rd(p, l)
(a)
=

1

d
lg

(

p1+d
j 2dlj + (1 − pj)

1+d2dln

·
∑

i∈X\{j}

2ln−li
∑

k=1

(
pi2

li−ln

1 − pj

)1+d )

(b)
≥

1

d
lg

(

p1+d
j 2dlj

+ (1 − pj)
1+d2dln

(
2ln − 2ln−lj

)−d
)

= lj +
1

d
lg
(

p1+d
j + (1 − pj)

1+d
(
2lj − 1

)−d
)

.

The final equality follows from algebra. The summation fol-

lowing (a) is a sum of the (1 + d) power of 2ln − 2ln−lj

positive terms which sum to 1. Consider these values, which

include 2ln−li repetitions of each pi2
li−ln/(1− pj) for i 6= j,

as a probability distribution called q. Then the summation is

related to the (1 + d)-Rényi entropy of q; substituting using

its definition (2) leads to (11) below. Furthermore, because

H0(q) = lg ‖q‖ and Hα is nonincreasing with α:





2ln−2ln−lj
∑

m=1

q1+d
m





1
d

= 2−H1+d(q) (11)

≥ 2− lg ‖q‖ = (2ln − 2ln−lj )−1.

This results in inequality (b), completing the lower bound by

substituting minimizing µ for lj . The transitions follow from

algebraically finding where there are two minimizing values.

A code achieving this lower bound, for p1 = pj ∈

[1/(2µ+1 − 1), 1/2µ) for some µ, is






p1,
1 − p1

2µ+1 − 2
, . . . ,

1 − p1

2µ+1 − 2
︸ ︷︷ ︸

2µ+1−2







.

By Theorem 1, this has a complete coding tree — recall

fd(wx, wx) = 2wx — in this case with l1 one bit shorter

than the other lengths. This is easily calculated as achieving

the lower bound.

2) Upper bounds: Given λ, define, as in [10]:

lji (p) =







λ if i = j
⌈

− lg

(

pi

(
1 − 2−λ

1 − pj

))⌉

if i 6= j.

Satisfying the Kraft inequality, this possibly suboptimal code

has a utility upper-bounding that of the optimal code:

Rd(p, l) ≤
1

d
lg

(

p1+d
j 2dλ

+
∑

i∈X\{j}

p1+d
i 2d⌈− lg(pi(1−2−λ)/(1−pj))⌉

)

<
1

d
lg

(

p1+d
j 2dλ

+
∑

i∈X\{j}

p1+d
i

(
pi

2
·
1 − 2−λ

1 − pj

)−d
)

=
1

d
lg

(

p1+d
j 2dλ + (1 − pj)

1+d

(
2

1 − 2−λ

)d
)



Since λ is arbitrary, the bound is obtained by choosing

the value offering the strictest bound. This upper bound is

approached for any d > −1 over p1 = pj ∈ (0.5, 1) for

p = (pj , 1 − pj − ǫ, ǫ) (i.e., j = 1 and λ = 1).

Now consider d < 0 and pj < 0.5. As noted in [6], an

application of Lyapunov’s inequality for moments [17, p. 27]

yields Rd′

(p, l) ≤ Rd(p, l) for d′ ≤ d, and, in particular,

Rd(p, l) ≤ R0(p, l) in this case, where

R0(p, l) =
∑

i∈X

pili − H1(p)

via limits. Since this is true for all values, it is true over the

minimization, and bounds for the usual linear case apply here.

In particular, as found in [18] and noted in [11], if we define

f(p1) =

{
3 − 5p1 − H1(2p1) if π1 ≤ p1 < 0.5

2 − lg 3 if 0 < p1 < π1

(12)

where π1 ≈ 0.491 is the root of the equality of the two terms,

then this serves as an upper bound (given most probable p1) on

optimal redundancy (linear, and thus also d < 0) in (0, 0.5).
Since this never exceeds the bound we seek here, we can

now consider only pj < p1. Consider first those cases in which

(10) is greater than 0.5. In these cases, we use the fact that

p1 ∈ [pj , 1− pj ] to note that the maximum upper bound over

this range — using (8) and (12) — is ωd(p1) at p1 = 1− pj ,

thus supplying the upper bound for the range (0, πd
0), where

πd
0 is the first root of the equality of the two terms in the

maximization at (10).

Over pj ∈ (πd
0 , 0.5), we first note that 0.5 is an upper bound

via similar logic: If p1 ≤ 0.5, we already know that this is

an upper bound. Otherwise p1 ∈ (0.5, 1 − πd
0), and (8) using

j = 1 provides an upper bound not exceeding 0.5.

Fig. 1 illustrates these bounds at a handful of d values,

and at limits −1, 0, and ∞. For d → 0, l’Hôpital’s rule

reveals the lower bound to be the optimal one of Theorem 2

of [19] for j = 1 and Theorem 4 of [11] for arbitrary j. If

one replaces optimal λ with (possibly suboptimal) ⌈− lg pj⌉,

the upper bound becomes the suboptimal one of Lemma 1 of

[10]. Taking d → ∞ using, for any positive x, y, a, b,

lim
d→∞

1

d
lg(xad + ybd) = lg max(a, b)

yields the minimum maximum pointwise redundancy bounds

of [6], which are both tight.

The upper bound is clearly not optimal here, since it is not

optimal for d → 0 from either direction. In particular, the flat

portion for d < 0 — the 0.5 term in secondary bound (10)

— is not flat in the optimum bounds for traditional Huffman

coding. However, the following might be of help in improving

this in future work:

Theorem 3: If d < 0 and p1 ≥ 0.4, an optimal code exists

with l1 = 1.

Proof: The approach here is similar to [20]. Consider the

coding step at which item 1 gets combined with other items;

we wish to prove that this is the last step. At the beginning

of this step the (possibly merged) items left to combine are

{1}, Sk
2 , Sk

3 , . . . , Sk
k , where we use Sk

j to denote the set of

(individual) items combined into a (possibly) compound item,

and w(Sk
j ) to denote its weight. At this step, p1 is smaller

than all but possibly one of Sk
j , so (k − 1)p1 ≥ (k − 1)0.4

is less than the sum of weights, which in turn is less than or

equal to 1. Thus k is at most three.

Consider items {1}, S3
2 , and S3

3 . Assume without loss of

generality that w(S3
2 ) ≥ w(S3

3 ). If w(S3
2 ) is not compound,

{1} has the greatest weight and we are finished. If it is

compound, call its two subtrees S4
3 and S4

4 , in order of

nonincreasing weight. Clearly w(S4
3 ) ≤ w(S3

3 ) due to the

combination order, so w(S3
2 ) ≤ 2w(S3

3). Thus 1.5w(S3
2) ≤

w(S3
2 )+ w(S3

3) ≤ 0.6, so w(S3
3 ) ≤ w(S3

2 ) ≤ 0.4, and we can

combine these two items to achieve the optimal code. This is

tight in the sense that (p1, (1− p1)/3, (1− p1)/3, (1− p1)/3)
has l1 = 2 for p1 ∈ (0.25, 0.4).

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, July 1948.

[2] L. L. Campbell, “A coding problem and Rényi’s entropy,” Inf. Contr.,
vol. 8, no. 4, pp. 423–429, Aug. 1965.

[3] P. A. Humblet, “Generalization of Huffman coding to minimize the
probability of buffer overflow,” IEEE Trans. Inf. Theory, vol. IT-27,
no. 2, pp. 230–232, Mar. 1981.

[4] F. Rezaei and C. D. Charalambous, “Robust coding for uncertain
sources: A minimax approach,” in Proc., 2005 IEEE Int. Symp. on
Information Theory, Sept. 4–9, 2005, pp. 1539–1543.

[5] M. B. Baer, “Optimal prefix codes for infinite alphabets with nonlinear
costs,” IEEE Trans. Inf. Theory, vol. IT-54, no. 3, pp. 1273–1286, Mar.
2008.

[6] ——, “Redundancy-related bounds for generalized Huffman codes,”
IEEE Trans. Inf. Theory, vol. IT-57, no. 4, pp. 2278–2290, Apr. 2011.

[7] A. Rényi, “Some fundamental questions of information theory,” Magyar
Tudományos Akadémia III. Osztalyanak Közlemenei, vol. 10, no. 1, pp.
251–282, 1960.

[8] A. C. Blumer and R. J. McEliece, “The Rényi redundancy of generalized
Huffman codes,” IEEE Trans. Inf. Theory, vol. IT-34, no. 5, pp. 1242–
1249, Sept. 1988.

[9] R. G. Gallager, “Variations on a theme by Huffman,” IEEE Trans. Inf.

Theory, vol. IT-24, no. 6, pp. 668–674, Nov. 1978.
[10] C. Ye and R. W. Yeung, “A simple bound of the redundancy of Huffman

codes,” IEEE Trans. Inf. Theory, vol. IT-48, no. 7, pp. 2132–2138, July
2002.

[11] S. Mohajer, S. Pakzad, and A. Kakhbod, “Tight bounds on the redun-
dancy of Huffman codes,” in Proc., IEEE Information Theory Workshop,
Mar. 13–17, 2006, pp. 131–135.

[12] P. A. Humblet, “Source coding for communication concentrators,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1978.

[13] F. Jelinek, “Buffer overflow in variable length coding of fixed rate
sources,” IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 490–501, May
1968.

[14] D. S. Parker, Jr., “Conditions for optimality of the Huffman algorithm,”
SIAM J. Comput., vol. 9, no. 3, pp. 470–489, Aug. 1980.

[15] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. New
York, NY: Wiley-Interscience, 2006.

[16] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. Mineola, NY: Dover
Publications, 1964.

[17] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Cambridge,
UK: Cambridge Univ. Press, 1934.

[18] D. Manstetten, “Tight bounds on the redundancy of Huffman codes,”
IEEE Trans. Inf. Theory, vol. IT-37, no. 1, pp. 144–151, Jan. 1992.

[19] B. L. Montgomery and J. Abrahams, “On the redundancy of optimal
binary prefix-condition codes for finite and infinite sources,” IEEE Trans.

Inf. Theory, vol. IT-33, no. 1, pp. 156–160, Jan. 1987.
[20] O. Johnsen, “On the redundancy of binary Huffman codes,” IEEE Trans.

Inf. Theory, vol. IT-26, no. 2, pp. 220–222, Mar. 1980.


