Coding for General Penalties

Michael Baer
Stanford University
calbear@stanford.edu

Abstract—

Given the probability mass function of an alpha-
bet, Huffman coding finds a corresponding prefix-free
binary code that minimizes the expected codeword
length. However, there are many practical situations
in which the constraints and goals are different from
those in Huffman coding; minimization of the linear
penalty of expected length may not always be the goal.
If the data rate is slow, long codewords are highly
undesirable, potentially causing an intolerable delay.
Examples for which this is the case include remote ex-
ploration, military applications and group testing for
diagnostic systems.

In this paper, we examine a family of coding prob-
lems with non-linear penalties. We then generalize
the most efficient algorithm for finding length-limited
codes[12] to an efficient algorithm for finding optimal
codes for any penalty in this family, which we denote
general additive conver penalties. These are penalties of
the form Zif(li,pi), where [; denotes the length of
the ith codeword, p; denotes the corresponding prob-
ability and f is convex and increasing in each /;. This
includes several previously proposed penalties, includ-
ing all those in a general sub-problem proposed by
Campbell[3]. In the Campbell case, among others, the
optimization may be performed using quadratic time
and linear space. This algorithm may also be further
applied to an expanded range of penalties.

Keywords— Optimal prefix code, Huffman algo-
rithm, finite alphabet, coding of integers.

I. INTRODUCTION
A. Problem

The game of twenty questions — in which one is
challenged to identify an item by asking up to twenty
“yes” or “no” questions — is often cited when explain-
ing the most basic information-theoretic concepts,
such as entropy and coding[2]. Indeed, the general
problem of binary coding, finding a representation of
a possibility in terms of sequences of bits — “yes” or
“no” questions — is also that encountered in twenty
questions.

However, there is at least one vital difference be-
tween standard coding and twenty questions: In the

actual game of twenty questions, minimization of
mean length is not in fact the goal. The goal in-
stead is to minimize the probability a codeword has
more than twenty bits, which can be done by using
as many 20-bit codewords as possible. Furthermore,
in practical situations the goal may not always be to
achieve the optimal average rate. Only in coding for
high-rate communications is average rate the precise
concern.

Practical problems in which the goal is not min-
imizing mean length include those involving remote
exploration, military applications and group testing
for diagnostic systems, e.g. blood testing[10]. In such
situations, at least one direction of communication
may enable only a handful of crucial bits to be sent —
a natural channel may have nearly zero bandwidth,
a mission-critical channel may be jammed by an ad-
versary, and blood tests may be costly and time-
consuming. Therefore, long codewords should be
avoided. In a case in which there are several requests
for information, long codewords may also prevent fur-
ther vital communication through a channel, via the
“slow truck effect,” the phenomenon by which many
small packets (i.e. short codewords or fast cars) are
held up by one long packet (long codeword or slow
truck)[6]. For these reasons and others, there are
cases in which long sequences of bits should be pe-
nalized non-linearly.

One of the oldest well-known illustrations of coding
is, in fact, a military application, involving a situa-
tion said to have occurred during the Bar Kochba
revolt of AD 132-135. Rising up against Roman op-
pression in ancient Palestine, revolution leader Bar
Kochba sent out a scout to spy on the Roman camp.
The Romans captured and tortured the scout, cut-
ting out his tongue. After escaping, he could not
speak and, being illiterate, could not write. He could
only answer “yes” or “no” questions by nodding or
shaking his head. Bar Kochba used the information
gleaned from these questions to defend his fortress.

In Eastern Europe, “twenty questions” was known

as “the Bar-kochba game[15].” However, while the
scout’s limitations were not to twenty questions,
he nevertheless needed to trade off the information
gleaned with the time taken to glean it in a manner
different from standard coding. To do this, one may
use some sort of criterion, or penalty function. The
penalty is selected according to the value of obtain-
ing the information in a certain amount of time (or
codeword length or number of tests).

In this paper, we concern ourselves with such
penalties. We consider a generalization of linear cod-
ing which solves a general family of problems.

B. Formalization of the coding problem

Let us briefly formalize the standard coding prob-
lem. Each codeword, or sequence of answers to pre-
determined questions, is in {0, 1}*, the set of all finite
sequences of 0s and 1s (or “yes”s and “no”s).

We wish to assign such binary codewords to a finite
alphabet, X'. We may assume, without loss of gener-
ality, that X = {1,2,...,n} for some n = |X| < +00.
The ith member of X" is thus the integer i.

For a given alphabet, random variable X €
{1,2,...,n} is chosen such that X = i with prob-
ability p; € (0,1]. Probability zero items may be
omitted as they never figure in any properties re-
garding the distribution. Expected values involving
X under this probability distribution are referred to
as Ep[f(X)], where p = (p1,p2,...,Pn), emphasiz-
ing the underlying probability distribution. Without
loss of generality, for all 7 > j, p; < p;.

Each item may be assigned a corresponding code-
word that we denote as ¢; € Cx C {0,1}*, where
Cy, the code, is the collection of codewords chosen.
The only fundamental constraint is that the code be
prefix-free. That is, to eliminate ambiguity and force
codewords to be self-terminating, no codeword may
be the prefix of another codeword.

Each codeword ¢; is of length [;, subject to the con-
straints of the problem. For the sake of notation, we
may instead refer to [(i) = I;. A code is feasible if and
only if its codeword lengths satisfy the Kraft inequal-
ity, >; 271 <1, which applies not just to prefix-free
codes but to any uniquely decodable code[4]. We will
refer to such a set of feasible code lengths as L.

Definition: A set of lengths, Ly, is called a length

ensemble.

Finding either C'y or Ly solves the problem, as a
valid code may easily be found from the length en-
semble, and vice versa. Note that when lengths are
enumerated in decreasing order and different ensem-
bles for the same n are sorted lexicographically, such
sets are well-ordered.

With the Kraft inequality and perhaps other con-
straints, Huffman coding[8] finds the codebook Cx =
{¢;} that minimizes the expected length, Ep[I(X)] =
> pili. The central goal of coding theory, due to
the strong law of large numbers, is this minimiza-
tion. With large amounts of data, one need only
worry about mean length, and the penalty is linear.

II. A NON-LINEAR PENALTY
A. Formalization and motivation of the problem

We now consider the problem of coding for a
penalty that is a non-linear function of codeword
lengths. With such a different penalty — for which
minimization of mean length is not the goal — the
solution to the problem may differ.

The goal should be to minimize a function of the
given p and solution Ly (or Cy). A general fam-
ily of problems to consider are functions of the form
FP(Lx) =), f(li,p;) for some function f(z,y) :
N x[0,1] - RU +oco. We always assume f to be
monotonically increasing in /;, and usually assume it
to be convex in [;, so that there is a positive penalty
for each additional bit, and the penalty for each addi-
tional bit is at least equal to that of the last bit. The
latter assumption is sensible for examples in which
the bits sent are critical.

Given such an f and a p, the problem is then:

> flipi)
Y. 27l <1
l; eEN

Minimize (7, ,}
subject to

A sub-problem was proposed by Campbell[3] and
covers most interesting cases.! He considers F's
of the form FP(Ly) = FP(Cx):= Y ,pif(l;), or
Eo[f(1(X))]. This problem may be stated as follows:

LCampbell also proposes concave and general versions of the
problem, but, as previously discussed, here we restrict our-
selves to the convex case.

Given probability vector p and strictly monotonic,
convex f(z),

Minimize (7, ,}
subject to

Epf(L(X))]
St 1)
l; € N.

In the linear case, the function is f(z) = x; that
is, for each additional bit used, we exact a constant
penalty.

With the above, we can define a rather general
problem:

Definition: Consider f(l;,p;) : N x [0,1] —
R U 400, monotonically increasing and convex
with respect to I; € N. The general addi-
tive convex coding problem is that of minimizing
F(Lx,p) := Y, f(li,pi) over Ly, subject to the
Kraft inequality and the integer constraint.

This problem is the one we solve here, thus solving
the Campbell sub-problem case (1) as well. Hereto-
fore a solution to either case was only known for cer-
tain specific cases of this problem. The most general
related solution is the distinct one explored in [14],
[5], which uses F merely to break ties when the linear
case has multiple solutions; the solution uses bottom-
merge Huffman coding, first explored in Schwarz[16].

The specific Campbell case of f(l;) = al; + BIZ,
for given a, 8 > 0 has been previously considered by
Larmore[11], who presents a O(n?®) time and space
algorithm. A version of the algorithm we present can
be applied to improve this result to O(n?) time and
linear space.

It is also worthwhile to note that this result of [11]
is used in order to construct a polynomial time algo-
rithm for finding a code minimizing a complex non-
additive function corresponding to the expected wait-
ing time between information request and receipt.?
Our results thus improve this algorithm. In fact, they
may be used to find efficient polynomial time algo-
rithms to minimize any of a wide variety of functions;
see the convex hull theorem of [11] for details.

We assume, without loss of generality, that the do-
main of f may be extended to {N U {0},[0,1]} and
that f(0,p;) = 0. If this is not the case, we may
replace f with

2The model used assumes information will be sent through a
queue with Poisson arrival time and service time proportional
to codeword length, i.e. using an M/G/1 queue[6].

f(llapl) _2f(17p1)+f(27p1), lz >0

Fllipi) = { Fllipi) =0, ;=0

retaining convexity and monotonicity.

We expand upon Larmore and Hirshberg[12] here,
making a modification that allows the algorithm to
be used for any additive convex penalty. First let us
discuss a more general problem, the Coin Collector’s
problem.

B. The Coin Collector’s problem and the Package-
Merge algorithm

Let 2% denote the set of all integer powers of two.
The Coin Collector’s problem of size m considers m
coins with width p; € 22; one can think of width as
coin face value, e.g. p; = i for a quarter. Each coin
also has weight u; € R. The final parameter is total
width, denoted T'. The problem is thus:

Minimize (e}
subject to

Eieg i (2)

EieB pi =T,

where 7 := {1,...,m}.

This problem is an input-restricted case of the
knapsack problem, which, in general, is N"P-hard[13].
However, there is a linear time solution to (2) pre-
sented in [12], the Package-Merge algorithm, along
with an iterative linear implementation and proof.
In our notation, we use ¢ € Z to denote both the
index of a coin and the coin itself.

C. A general algorithm

We now find a reduction from the general additive
convex coding problem to the Coin Collector’s prob-
lem. We first assume bounds on the maximum code
length of possible solutions. This may be explicit in
the penalty definition as in (3) (below), it may be
implicit in some property of the set of optimal solu-
tions, or it may be the maximum unary code length
of n — 1. Then we are only interested in codes with
n codewords, none of which has greater length than
L for some [logyn] < L <n-1.

Definition: A node is an ordered pair of integers
(¢,1) such that ¢ € {1,...,n} and I € {1,...,L}.

| (level) 9(width)

[|2

Fig. 1. All possible nodes I and a sample optimal length
ensemble nodeset (the subset of I within dashed lines)

Call the set of all L - n possible nodes I (see fig-
ure 1). The set of nodes, or nodeset, correspond-
ing to a codeword ¢; (length I;) is the set of size [;,
nodeset(c;) == {(4,1) | j =i, 1 € {1,...,l;}} C L.
The nodeset corresponding to length ensemble Ly is
nodeset(Ly) := |J;nodeset(c;), also C I. If node
(i,1) € I then we say it has width p(i,l) := 27! and
weight p(i,1) == f(l,p;) — f(L —1,ps).

With a simple reduction, any optimal solution S
of the Coin Collector’s problem for T = n — 1 on
coins 7 = I is a nodeset for an optimal solution of
the coding problem. Recall n = |X|. Figure 1 shows
such a nodeset as a subset of I. Thus this reduction
finds an optimal code for all monotonically increas-
ing and convex f(l;,p;) in O(L - n) time. The time
complexity is dependent on the structure of f and
p, ranging from O(nlogn) to O(n?logn) with space
requirement O(nlogn) to O(n?).

D. A general linear space algorithm

Note that the resulting length ensemble need not
necessarily have the property that if ¢ < &, then [; <
ly,. For example, if p; = pg, we are guaranteed no
particular inequality relation between [; and [;,. Also,
even if all p; were distinct, if f(l;,p;) = p;12li, we
would expect an inequality relation reversed from the
linear case. Thus the problem is quite general, but
we can improve upon the algorithm by introducing
a reasonable constraint that includes all the cases in
the Campbell problem (1).

Definition: A problem is differentially monotonic
inpifvVi>1, p >pe = [f(l,p) — f(L—1,p)] >
[f(l)pk) - f(l -]-)pk)] unless f(l -]-)pz) = +o0.

If the problem is differentially monotonic and all
p; are distinct, we may use a modified version of this
algorithm, which we omit for brevity, one using only
linear space and O(n?) time. The modification is a

generalization of the linear space algorithm in [12].

However, the assumption of distinct p; puts an
undesirable restriction on our input. Larmore and
Hirshberg[12] suggest modifying the probabilities
slightly to make them distinct, but this is inelegant
and the resulting algorithm is nondeterministic. Here
we present an elegant, deterministic alternative, ap-
plicable to all differentially monotonic cases.

In initial ordering, we sort the items in reverse of
their order of appearance. Recall p is a decreasing
vector. In the first stage of the Package-Merge al-
gorithm, then, combined items are paired off such
that all similar-width items in one “package”? have
adjacent indices. In addition, we choose non-merged
items over merged in the case of ties, in the same
manner as in the two-queue method of Huffman cod-
ing[17]. We obtain a deterministic algorithm retain-
ing this adjacency, and along with it width order pref-
erence for items of equal weight, through all steps.
Thus we no longer need to worry about a case where
i < k but l; > l;. An additional benefit is that, in
the case of ties, this results in minimizing maximal
length among optimal codes, as with bottom-merge
Huffman coding[16].

E. Examples

The general additive convex coding problem in-
cludes such cases as

fli,pi) = pilf

for @ > 1, the moment penalty, previously with no
efficient solution;

fli,pi) = pia

for a > 0, the exponential penalty, previously pro-
posed in Campbell[3] and solved in [7], [9]; and

li S lmam
li > lmaz

pils,
+00,

) = { 3)

for some fixed l;,00 > [logyn], the length limited
linear penalty, solved efficiently using the Package-
Merge algorithm in [12]. This is now a special

3Packages of items will be either in the final nodeset or ab-
sent from it as a whole.

case of our improved algorithm. All of the above
penalties are also Campbell cases (and thus differen-
tially monotonic) and may therefore be solved with
quadratic time and linear space.

If we extend the domain of f to a monotonically in-
creasing function on {R*,[0,1]}, we may bound the
solution value as follows. Because the optimal solu-
tion to the problem without the integer constraint
must have at most the same minimum value, this
optimal solution, which we denote l;r for the ith pa-
rameter, provides a lower bound. The Shannon-like
code I; = HI] provides an upper bound. Thus we
have

Zf(l;r,pi) < Zf(lfapi) < Zf(”“api)

where each [} corresponds to the optimal integer
length for the ith codeword. Note further that the
above upper bound is strictly less than Zlf(l;r +
1,p;). These bounds are analogous to Campbell’s in-
terpretation of Rényi entropy and may be useful if
the real-valued problem can be solved analytically.

F. Conclusion

We have demonstrated an efficient algorithm for
general convex coding, with further improvements in
space complexity for differentially monotonic cases
such as the convex Campbell case.

REFERENCES

[1] J. Abrahams, “Huffman Code Trees and Variants,” DI-
MACS Workshop on Codes and Trees: Algorithmic and
Information Theoretic Approaches, Rutgers University,
Piscataway, NJ, 1998.

[2] J. Aczél and Z. Dardzy, “On Measures of Information
and Their Characterizations,” Academic, New York, NY,
1975.

[3] L. L. Campbell, “Definition of Entropy by Means of a
Coding Problem,” Zeitschrift fiir Wahrscheinlichkeitsthe-
orie und verwandte Gebiete, Vol. 6, pp. 113-118, 1966.

[4] T. Cover and J. Thomas, Elements of Information The-
ory, Wiley-Interscience, New York, NY, 1991.

[5] G. Forst and A. Thorup, “Minimal Huffman trees,” Acta
Informatica, Vol. 36, pp. 721-734, 2000.

[6] R. G. Gallager, Discrete Stochastic Processes, Kluwer
Academic Publishers, Boston, MA, 1996.

[7] T. C. Hu, D. J. Kleitman, and J. K. Tamaki, “Binary
Trees Optimum Under Various Criteria,” SIAM Journal
of Applied Mathematics, Vol. 37, pp. 246-256, 1979.

[8] D. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” Proc. IRE, Vol. 40, pp.
1098-1101, 1952.

(9]

[10]

P. A. Humblet, “Generalization of Huffman Coding to
Minimize the Probability of Buffer Overflow,” IEEE
Transactions on Information Theory, Vol. IT-27, pp. 230-
232, 1981.

S. Kumar and M. Sobel, “Finding a single defective in
binomial group testing,” Journal of American Statistical
Association, Vol. 66, pp. 824-828, 1971.

L. L. Larmore, “Minimum Delay Codes,” SIAM Journal
on Computing, Vol. 18, pp. 82-94, 1989.

L. L. Larmore and D. S. Hirshberg, “A Fast Algorithm
for Optimal Length-Limited Huffman Codes,” Journal of
the Association for Computing Machinery, Vol. 37, pp.
464-473, 1990.

U. Manber, Introduction to Algorithms, Addison-Wesley,
Reading, MA, 1989.

G. Markowsky, “Best Huffman Trees,” Acta Informatica,
Vol. 16, pp. 363-370, 1981.

A. Rényi, Naplo az informdcidelméletrdl (A Diary on In-
formation Theory), Gondolat, Budapest, Hungary, 1969.
E. S. Schwartz, “An Optimum Encoding with Minimum
Longest Code and Total Number of Digits,” Information
and Control, Vol. 7, pp. 37-44, 1964.

J. van Leeuwen, “On the construction of Huffman trees,”
Proc. 3rd International Colloquium on Automata, Lan-
guages, and Programming, University of Edinburgh, pp.
382-410, 1976.

