Infinite-Alphabet Prefix Codes Optimal for
(3-Exponential Penalties

Michael B. Baer
Electronics for Imaging
303 Velocity Way
Foster City, California 94404 USA
Email: Michael.Baer@efi.com

Abstract—Let P = {p(i)} be a measure of strictly positive with a general code for integers rather than a Huffman code
probabilities on the set of nonnegative integers. Althougfthe for a large but finite number of inputs. Similarly, it is often
countable number of inputs prevents usage of the Huffman ¢yqier 19 encode and decode such well-structured codes. For

algorithm, there are nontrivial P for which known methods th infinite-alohabet cod d iants of &
find a source code that is optimal in the sense of minimizing ese reasons, infinite-alphabét codes and variants ot anem

expected codeword length. For some applications, howeveg Widely used inimage and video compression standards [B], [6
source code should instead minimize one of a family of nonlear as well as for compressing text, audio, and numerical data.
objective functions, (-exponential means, those of the form  To date, the literature on infinite-alphabet codes has densi
log, 37, p(i)a”"”), where n(i) is the length of the ith codeword oo only finding efficient uniquely decipherable codes with
and a is a positive constant. Applications of such minimizations N N
include a problem of maximizing the chance of message receip '€SPECt 10 minimizing expected codeword Ien@?p(l_)”(l)'

in single-shot communications ¢ < 1) and a problem of Other utility functions, however, have been considered for
minimizing the chance of buffer overflow in a queueing system finite-alphabet codes. Campbell [7] introduced a problem
(a > 1). This paper introduces methods for finding codes optimal jn which the penalty to minimize, given some continuous

for such exponential means. One method applies to geometric ; i ; i .
distributions, while another applies to distributions with lighter I(§trlcitsly) monotonic increasingost function (z) : Ry —
=+

tails. The latter algorithm is applied to Poisson distributions. Both
are extended to minimizing maximum pointwise redundancy.

L(P,N,p) = 9071 <Zp(z)go(n(z)))

[. INTRODUCTION, MOTIVATION, AND MAIN RESULTS i

If probabilities are known, optimal lossless source codirgnd specifically considered the exponential subcases with
of individual symbols (and blocks of symbols) is usuallgxponentz > 1:
done using David Huffman’s famous algorithm [1]. There A (i)
are, however, cases that this algorithm does not solve [2]. La(P,N) = IOgaZp(l)a ’ @)
Problems with an infinite number of possible inputs — e.g., ‘
geometrically-distributed variables — are not coveredsdil that is,¢(x) = a®. Note that minimizing penalty. is also an
in some instances, the optimality criterion — penalty —  interesting problem fod < a < 1 and approaches the standard
is not the linear penalty of expected length. Both variarits penalty ) . p(i)n(i) for a — 1 [7]. While ¢(z) decreases
the problem have been considered in the literature, but ot « < 1, one can map decreasing to a corresponding
simultaneously. This paper discusses cases which are biottreasing functionp(l) = @max — ¢(I) (€.9., for max =
infinite and nonlinear. 1) without changing the penalty value. Thus this problem,

An infinite-alphabet source emits symbols drawn from thequivalent to maximizingy", p(i)a™(®, is a subset of those
alphabett,, = {0,1,2,...}. (More generally, we us& to considered by Campbell. All penalties of the form (1) are
denote an input alphabet whether infinite or finite.) Ilt= called 5-exponential means, wheyg= log,a [8, p. 158].
{p(i)} be the sequence of probabilities for each symbol, so thatCampbell noted certain properties férexponential means,
the probability of symbol is p(i) > 0. The source symbols but did not consider applications for these means. Apptioat
are coded into binary codewords. The codewsidl € {0,1}* were later found for the problem with > 1 [9]-[11]. These
in codeC, corresponding to input symbae] has lengthn(i), applications relate to a problem in which we wish to minimize
thus defining length distributiov. the probability of buffer overflow in communications; this i

Perhaps the most well-known such codes are the optintiscussed in the full version of this paper [12]. Also disads
codes derived by Golomb for geometric distributions [3], [4in the full version is an application fa < 1 introduced in
There are many reasons for using infinite-alphabet codberat[13], a problem of maximizing the chance of message receipt
than codes for finite alphabets, such as Huffman codes. Tihesingle-shot communications.
most obvious use is for cases with no upper bound — or atOne can solve any instance of the exponential penalty with
least no known upper bound — on the number of possibéefinite number of inputs using a linear-time algorithm found
items. In addition, for many cases it is far easier to come updependently by Huet al. [14, p. 254], Parker [15, p. 485],



and Humblet [16, p. 25], [10, p. 231], although only the lashformally speaking, results in a unary limit code; formyall

of these considered < 1. We present the exponential-penaltyhis is a straightforward corollary of Theorem 2 in Sectitin |

algorithm here; even though it cannot be used for an infinite|f ¢ > 0.5, a code with finite penalty exists if and only if
alphabet, it can be used to derive and show the optimality Rényi entropy of ordery(a) = (1 + log,a)™" is finite [18].

infinite-alphabet codes: It was Campbell who first noted the connection between the
Procedure for Exponential Huffman Coding optimal code’s penaltyl,(P, N*), and Rényi entropy
This procedure minimizes (1) for any positive# 1 and
|X| < oo, even if the “probabilities” do not add tb. We refer Ho(P) £ Llogy Y ,cxp(i)®
. L. . . . 0goa . og,a)”?!
to such arbitrary positive inputs ageights, denoted byw(7) = Hyoy(P) = 1;;‘52 log, Ziexp(l)(lﬂ gaa)

instead ofp(i):

1) Each itemi has weightw(i) € Wy, where X is the This relationship is
(finite) alphabet andx = {w(i)} is the set of all such
weights. Assume each iteinhas codeword:(i), to be Hoa)(P) £ Lo(P,N™) < Hya)(P) + 1
determined later.

2) Combine the items with the two smallest weight§j) which should not be surprising given the similar relatidpsh
and w(k) into one item with the combined weightbetween Huffman coding and Shannon entropy [19], which
w(j) = a- (w(j) + w(k)). This item has codeword corresponds ta — 1, H;(P) [20].
¢é(j), to be determined later, while item is assigned  One must be careful regarding the meaning of an “optimal
codeworde(j) = ¢(j)0 and & codewordc(k) = ¢(j)1. code” when there are an infinite number of possible codes
Since these have been assigned in term& 0f replace under consideration. One might ask whether there must exist
w(j) andw(k) with @(j) in Wx to form Wy. an optimal code or if there can be an infinite sequence of

3) Repeat procedure, now with the remaining codewordsdes of decreasing penalty without any code achieving the
(reduced in number by) and corresponding weights,limit penalty value. Fortunately the answer is the formke t
until only one item is left. The weight of this item proof being a special case of Theorem 2 in [18]. The question
is S w(i)a™@. All codewords are now defined byis then how to find one of these optimal source codes given
assigning the null string to this trivial item. parameter and probability measure.

Optimality of the algorithm is justified as in Huffman As in the linear case, this is not known for genefal
Coding’ in that an exchange argument can be used to S[‘M can be found for certain common distributions. In the
that an optimal code exists for which the least likely tw&€xt section, we consider geometric distributions and firad t
codewords differ in only their final bit, allowing a reduatio Golomb codes are optimal, although the optimal Golomb code
to the equivalent smaller problem that linearly combinesirth for a given probability mass function varies accordingato
weights. This algorithm can be modified to run in linear timéhe main result of Section Il is that, feg (i) = (1—6)0* and
(to input size) given sorted weights in the same manner as Ry, Gk, the Golomb code with parametér is optimal
Huffman coding [17]. for

Note that this algorithm assigns an explicit weight to each k = max (1, [— logy a — log, (1 + 6)]).
node of the resulting code tree implied by having each

item represented by a node with its parent representing §pesection I1l, we consider distributions that are relalve
combined items: If a node is a leaf, its weight is given b%?ht—tailed, that is, that decline faster than certain metric

the associated probability; otherwise its weight is defingffstributions. If there is a nonnegative integesuch that for
recursively as: times the sum of its children. This conceptisy| ; -  andi < j,

useful in visualizing both the coding procedure and its atitp

It is also worthwhile to note that < 0.5 is degenerate, oo
always resulting in theunary code (for infinite inputs) or p(i) > max (p(j), Z p(k)akj)
a unary-like code (for finite inputs) being optimal for any k=j+1
probability distribution. The unary code has ones terngdat
by a zero, i.e., codewords of the forf1‘0 : i > 0}. The then an optimal binary prefix code can be found which is a
unary-like code is a truncated unary code, that is, a code wgeneralization of the unary code. A specific case of this is
identical codewords to the unary code except for the longdbe Poisson distribution, where an aforementionad given
codeword, which is of the form!*I=1. For the unary-like by r = max([2a\] —2, [eA] — 1) for py(i) = e~ */il. Sec-
code, optimality fora < 0.5 can be shown using the codingtion IV discusses the maximum pointwise redundancy penalty
procedure; the smallest two itemjsand k, are combined, and which has a similar solution with light-tailed distributie and
the resulting item has weight - (w(j) + w(k)). This is no for which the Golomb code & with & = [—1/log,0] is
larger than the larger of the constituent weights, meartiag t optimal for with geometric distributions. Complete proafsd
the resulting item will be combined with third-smallestnite illustrations, as well as additional results, are givenhia tull
and so forth, resulting in a unary-like code. Taking limitsyersion [12].



[I. GEOMETRICDISTRIBUTION WITH EXPONENTIAL the latter two penalties approach equality ras— oo, the
PENALTY Golomb code must be optimal.
Consider the geometric distribution Thls rule for finding an optimal Golomb & code is
. equivalent to
po(i) = (1 —6)6"

for parameted € (0, 1). This distribution arises in run-length
coding as well as in other circumstances [3], [4].

k = max (1, [—logya — logy(1 4+ 6)]) .

This is a generalization of the traditional linear resuticg
lt.his corresponds ta — 1. Cases in which the left inequality

For the traditional linear penalty, a Golomb code wit ) ) . . A
parameterk — or Gk — is optimal for 6 + 6¥+1 < 1 < of (2) is an equality have multiple solutions, as with linear
— coding; see, e.g., [21, p. 289].

6%—1 +6*. Such a code consists of a unary prefix followed by~ " _ _ _

a binary suffix, the latter taking one @fpossible values. If Itis equivalent for the bits of the unary prefix to be reversed

, ’ . . L that is, to use{0L/*11b(j mod k,k) : 7 > 0} (as in [4])

is a power of two, all binary suffix possibilities have the gam tead of (174 0b(i mod k. &) » 7 > 0 in 131). Th

length; otherwise, their lengths(i) differ by at mostl and instead of{1- (j mod k, )_‘ Jj =0} (a_s in [ ].)' ne
latter has the advantage of being alphabetic, that is,; if

3,277 = 1. Such binary codes are calledmplete codes. d only ifefd) is lexi hically aften( s
This defines the Golomb code; for example, the Golomb cof8¢ ONV I c(i) is lexicographically a eb_(j)'. .
A little algebra reveals that, for a distributioRy and a

for = 3 is: Golomb code with parametér (lengthsNy,),

La(Py,Ni) = log, 2%, (1—0)pia!l 57 1+9)

a0 = g log, (1+ 558 ?
1 (1-6)0 010 where g = |[log, k] + 1 and z = 29 — k. Therefore,
2 (1-0)> 011 Theorem 1 provides thé that minimizes (3). Ifa > 0.5,
3 (1-6)¢° 100 the corresponding Rényi entropy is

4 (1- 9)9: 10 10 1_8

5 (1—-6)6° 1011 = e —

6 El - 9%96 110 0 Hoto (o) =1o2s T —goteyire @
7 (1-6)0" 11010 where we recall that(a) = (1+log,a)~'. (Again,a < 0.5 is

degenerate, an optimal code being unary with no correspond-
ing Rényi entropy.)

where the space in the code separates the unary prefix fronn evaluating the effectiveness of the optimal code, one
the complete suffix. In general, codewojdor Gk is of the might use the following definition ofverage pointwise re-

form {1U/M 0b(j mod k, k) : j > 0}, whereb(j mod k, k) is dundancy (or just redundancy):

a complete binary code for thg — k|j/k] + 1)th of k items.

D, A
It turns out that such codes are optimal for the exponential Rq(N, P) = La(P,N) = Ha(a)(P).
penalty: _ For nondegenerate values, we can plot tRg(N; ,, Py)
Theorem 1. Fora € Ry, if obtained from the minimization. This is done for> 1 and
1 a < 1linFig. 1. Asa — 1, the plot approaches the redundancy
k| pk+l k—1 | pk
0% +6 < a <O+ @) plot for the linear case, e.g., [4], reproduced as Fig. 2. In

for k > 1, then the Golomb code /Gis the optimal code for many potential applications of nonlinear coding — such as

Py. If no suchk exists, the unary code is optimal. the aforementioned fog > 1 [9]-{11] anda < 1 [12], [13]

The proof of optimality (in full version [12]) uses the _ a is very close tol. Since this analysis shows that the

procedure for exponential Huffman coding to find an optimaq’oIomb code that_|s optimal for givanand? is Op“.”_‘a' not
; - . .only for these particular values, but for a rangexdfixing 6)
exponential Huffman code for a sequence of similar finité

X P ' . and a range of (fixing a), the Golomb code is, in some sense,
weight distributions. Define am-reduced geometric source . )
much more robust and general than previously appreciated.

W, as:
(1-0)0, 0<i<m I1l. OTHERINFINITE SOURCES
win (i) £ { (1—6)ad’ m_< Z-_< m otk In this section we consider another type of probability dis-
1=ab® > - tribution for binary coding, a type with a light tail. Humie

for any m > —1. It can be shown that this distribution hasapproach [22], later extended in [23], uses the fact thaiethe
an optimal code with lengths(0) through n(m) that are is always an optimal code consisting of a finite number of
identical to the Golomb code in question. One can then shawnunary codewords for any probability distribution with a
that the optimal code for the geometric distribution musteharelatively light tail, one for which there is ansuch that, for

a penalty between that for the Golomb code for the geometalt j > r andi < j, p(i) > p(j) andp(i) > 3777 p(k).
distribution and the optimal code fd#,, (for anym). Since Due to the additive nature of Huffman coding, the unary part
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Fig. 1. Redundancy of the optimal code for the geometricribision with the exponential penalty (parameter. Ra(Nga, Py) = La(Py,Nj ) —
H(a)(Ps), Wherea(a) = (1+ log,a)~1, Py is the geometric probability sequence implied hyand N, is the optimal length sequence for distribution

Py and parameteus.

Fig. 2. Redundancy of the optimal code for the geometrigitigion with

the traditional linear penalty.

for item r + 1 (which, without loss of generality, consists of
all 1's) followed by the unary code far—r — 1. We call such
codesunary-ended.

Theorem 2: Let p(-) be a probability measure on the set of
nonnegative integers, and lebe the parameter of the penalty
to be optimized. If there is a nonnegative integesuch that
forall j > r andi < j,

p(i) > max (p(j), > p(k)a’“_j> (6)

k=j+1

then there exists a minimum-penalty binary prefix code with
every codeword > r consisting ofj —x 1’s followed by one
0 for some fixed nonnegative integer

The proof of optimality (in full version [12]) is similar to
that for the geometric distribution. In this case, for a give

can be considered separately, and the remaining codeworgls> —1, the corresponding codeword weights are
can be found via the Huffman algorithm. Once again, this has

to be modified for the exponential case.

We wish to show that the optimal code can be obtained
when there is a nonnegative integesuch that, for allj > r

andi < 7,

p(i) = max (p(j), > p(k)akj) :

k=j+1

The optimal code is obtained by considering the reduce
alphabet consisting of symbols1,...,r + 1 with weights

wim (i) = { p(i), i < imax

EO:imax p(k)ak_imax-i_la i = imax

where iy = r +m + 2. Fora < 1, the proof is outlined
similarly to that for the geometric case. Fer> 1, the key
is to note that the combined weight of a node in an optimal
code is upper-bounded by the weight of a node with the same
children in a code for which the node is the root of a unary
sgbtree. This allows an inductive proof that the unary sebtr
= and thus the proposed code — is optimal.

Consider the example of optimal codes for the Poisson

~ | p@), i <r distribution,
wid) = { ZZO:T+1 p(k)a*=", i=r+1. ©) pA(7) Ne
A = ; .
Apply exponential Huffman coding to this reduced set of a!

weights. For itemg) throughr, the Huffman codewords for How does one find a suitable value fom such a case? It has
the reduced and the infinite alphabets are identical. Edwdr otbeen shown that > [eA] — 1 yieldsp(i) > p(j) for all j > r
item+i > r has a codeword consisting of the reduced codewoatid i < j, satisfying the first condition of Theorem 2 [22].



Moreover, if, in additionj > [2a\]—1 (and thusj > aA—1),

then 11]

iz (i + k)a*

v [2
e M\ | ax a?)\?
7 [m T oo T }
. a\ a?)\?
< p(]){ﬁ‘i‘W—F] [3]
= p(j) e (4]
. j+1
< »(j)
< ). g

Thus, since we considgr> r, r = max([2a\] —2, [eA] — 1)
is sufficient to establish ansuch that the above method yields[ﬁ]
the optimal infinite-alphabet code.

In order to find the optimal reduced code, use

> plk)a*T

k=r+1
0/7746)\(&71) _ Zp(k)akfr.
k=0

For example, consider the Poisson distribution with 1. We
code this for bothu = 1 anda = 2. For both valuesy = 2,
so both are easy to code. For= 1, w_1(3) = 1 — 2.5¢~1
0.0803. .., while, fora = 2, w_(3) = 0.25¢ — 1.25¢" [
0.2197.... After using the appropriate Huffman procedure on
each reduced source df weights, we find that the optimal
code fora = 1 has lengthsV = {1,2,3,4,5,6,...} — those
of the unary code — while the optimal code fer= 2 has
lengths N = {2,2,2,3,4,5,...}.

w_1(r+1) 7]

(8]
El

[20]

~

~
~

[13]

IV. REDUNDANCY PENALTIES

. 14]
Itis natural to ask whether the above results can be extenéed
to other penalties. One penalty discussed in the literagutheat 5
of maximal pointwise redundancy [24], in which one seeks {8
find a code to minimize [16]
R*(N, P) £ max[n(i) + log,p(i))

This can be shown to be a limit of the exponential case, as
in [25], allowing us to analyze it using the same techniqués]
as exponential Huffman coding. This limit can be shown byo9]
defining dth exponential redundancy as follows:

Ry(N,P) 2 Jlogy ¥ e p(i)200 0 Horr(®)
1082 X p(i) 12, [21]
ThusR*(N, P) = limg_... Rq4(N, P), and the above methods[zz]
should apply in the limit. In particular, the Golomb codé& G
for k = [—1/log,0] is optimal for minimizing maximum [23]
pointwise redundancy foPy. For light tails, a similar con-
dition to (6) holds; in this case, we find ansuch that,

[17]

[20]
A

[24]

forall i <, p(i) > p(r)
[25]
and

forall j > r, p(j) = 2p(j +1).

Applications and proofs of these results are in the full iers
[12].
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