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Abstract— Let P = {p(i)} be a measure of strictly positive
probabilities on the set of nonnegative integers. Althoughthe
countable number of inputs prevents usage of the Huffman
algorithm, there are nontrivial P for which known methods
find a source code that is optimal in the sense of minimizing
expected codeword length. For some applications, however,a
source code should instead minimize one of a family of nonlinear
objective functions, β-exponential means, those of the form
loga

P

i
p(i)an(i), where n(i) is the length of the ith codeword

and a is a positive constant. Applications of such minimizations
include a problem of maximizing the chance of message receipt
in single-shot communications (a < 1) and a problem of
minimizing the chance of buffer overflow in a queueing system
(a > 1). This paper introduces methods for finding codes optimal
for such exponential means. One method applies to geometric
distributions, while another applies to distributions with lighter
tails. The latter algorithm is applied to Poisson distributions. Both
are extended to minimizing maximum pointwise redundancy.

I. I NTRODUCTION, MOTIVATION , AND MAIN RESULTS

If probabilities are known, optimal lossless source coding
of individual symbols (and blocks of symbols) is usually
done using David Huffman’s famous algorithm [1]. There
are, however, cases that this algorithm does not solve [2].
Problems with an infinite number of possible inputs — e.g.,
geometrically-distributed variables — are not covered. Also,
in some instances, the optimality criterion — orpenalty —
is not the linear penalty of expected length. Both variants of
the problem have been considered in the literature, but not
simultaneously. This paper discusses cases which are both
infinite and nonlinear.

An infinite-alphabet source emits symbols drawn from the
alphabetX∞ = {0, 1, 2, . . .}. (More generally, we useX to
denote an input alphabet whether infinite or finite.) LetP =
{p(i)} be the sequence of probabilities for each symbol, so that
the probability of symboli is p(i) > 0. The source symbols
are coded into binary codewords. The codewordc(i) ∈ {0, 1}∗

in codeC, corresponding to input symboli, has lengthn(i),
thus defining length distributionN .

Perhaps the most well-known such codes are the optimal
codes derived by Golomb for geometric distributions [3], [4].
There are many reasons for using infinite-alphabet codes rather
than codes for finite alphabets, such as Huffman codes. The
most obvious use is for cases with no upper bound — or at
least no known upper bound — on the number of possible
items. In addition, for many cases it is far easier to come up

with a general code for integers rather than a Huffman code
for a large but finite number of inputs. Similarly, it is often
faster to encode and decode such well-structured codes. For
these reasons, infinite-alphabet codes and variants of themare
widely used in image and video compression standards [5], [6],
as well as for compressing text, audio, and numerical data.

To date, the literature on infinite-alphabet codes has consid-
ered only finding efficient uniquely decipherable codes with
respect to minimizing expected codeword length

∑

i p(i)n(i).
Other utility functions, however, have been considered for
finite-alphabet codes. Campbell [7] introduced a problem
in which the penalty to minimize, given some continuous
(strictly) monotonic increasingcost function ϕ(x) : R+ →
R+, is

L(P, N, ϕ) = ϕ−1

(

∑

i

p(i)ϕ(n(i))

)

and specifically considered the exponential subcases with
exponenta > 1:

La(P, N) , loga

∑

i

p(i)an(i), (1)

that is,ϕ(x) = ax. Note that minimizing penaltyL is also an
interesting problem for0 < a < 1 and approaches the standard
penalty

∑

i p(i)n(i) for a → 1 [7]. While ϕ(x) decreases
for a < 1, one can map decreasingϕ to a corresponding
increasing functionϕ̃(l) = ϕmax − ϕ(l) (e.g., for ϕmax =
1) without changing the penalty value. Thus this problem,
equivalent to maximizing

∑

i p(i)an(i), is a subset of those
considered by Campbell. All penalties of the form (1) are
calledβ-exponential means, whereβ = log2a [8, p. 158].

Campbell noted certain properties forβ-exponential means,
but did not consider applications for these means. Applications
were later found for the problem witha > 1 [9]–[11]. These
applications relate to a problem in which we wish to minimize
the probability of buffer overflow in communications; this is
discussed in the full version of this paper [12]. Also discussed
in the full version is an application fora < 1 introduced in
[13], a problem of maximizing the chance of message receipt
in single-shot communications.

One can solve any instance of the exponential penalty with
a finite number of inputs using a linear-time algorithm found
independently by Huet al. [14, p. 254], Parker [15, p. 485],



and Humblet [16, p. 25], [10, p. 231], although only the last
of these considereda < 1. We present the exponential-penalty
algorithm here; even though it cannot be used for an infinite
alphabet, it can be used to derive and show the optimality of
infinite-alphabet codes:

Procedure for Exponential Huffman Coding
This procedure minimizes (1) for any positivea 6= 1 and

|X | < ∞, even if the “probabilities” do not add to1. We refer
to such arbitrary positive inputs asweights, denoted byw(i)
instead ofp(i):

1) Each itemi has weightw(i) ∈ WX , whereX is the
(finite) alphabet andWX = {w(i)} is the set of all such
weights. Assume each itemi has codewordc(i), to be
determined later.

2) Combine the items with the two smallest weightsw(j)
and w(k) into one item with the combined weight
w̃(j) = a · (w(j) + w(k)). This item has codeword
c̃(j), to be determined later, while itemj is assigned
codewordc(j) = c̃(j)0 and k codewordc(k) = c̃(j)1.
Since these have been assigned in terms ofc̃(j), replace
w(j) andw(k) with w̃(j) in WX to form WX̃ .

3) Repeat procedure, now with the remaining codewords
(reduced in number by1) and corresponding weights,
until only one item is left. The weight of this item
is
∑

i w(i)an(i). All codewords are now defined by
assigning the null string to this trivial item.

Optimality of the algorithm is justified as in Huffman
coding, in that an exchange argument can be used to show
that an optimal code exists for which the least likely two
codewords differ in only their final bit, allowing a reduction
to the equivalent smaller problem that linearly combines their
weights. This algorithm can be modified to run in linear time
(to input size) given sorted weights in the same manner as
Huffman coding [17].

Note that this algorithm assigns an explicit weight to each
node of the resulting code tree implied by having each
item represented by a node with its parent representing the
combined items: If a node is a leaf, its weight is given by
the associated probability; otherwise its weight is defined
recursively asa times the sum of its children. This concept is
useful in visualizing both the coding procedure and its output.

It is also worthwhile to note thata ≤ 0.5 is degenerate,
always resulting in theunary code (for infinite inputs) or
a unary-like code (for finite inputs) being optimal for any
probability distribution. The unary code has ones terminated
by a zero, i.e., codewords of the form{1i0 : i ≥ 0}. The
unary-like code is a truncated unary code, that is, a code with
identical codewords to the unary code except for the longest
codeword, which is of the form1|X |−1. For the unary-like
code, optimality fora ≤ 0.5 can be shown using the coding
procedure; the smallest two items,j andk, are combined, and
the resulting item has weighta · (w(j) + w(k)). This is no
larger than the larger of the constituent weights, meaning that
the resulting item will be combined with third-smallest item,
and so forth, resulting in a unary-like code. Taking limits,

informally speaking, results in a unary limit code; formally,
this is a straightforward corollary of Theorem 2 in Section III.

If a > 0.5, a code with finite penalty exists if and only if
Rényi entropy of orderα(a) = (1 + log2a)−1 is finite [18].
It was Campbell who first noted the connection between the
optimal code’s penalty,La(P, N∗), and Rényi entropy

Hα(P ) , 1
1−α log2

∑

i∈X p(i)α

⇒ Hα(a)(P ) = 1+log2a
log2a log2

∑

i∈X p(i)(1+log2a)−1

.

This relationship is

Hα(a)(P ) ≤ La(P, N∗) < Hα(a)(P ) + 1

which should not be surprising given the similar relationship
between Huffman coding and Shannon entropy [19], which
corresponds toa → 1, H1(P ) [20].

One must be careful regarding the meaning of an “optimal
code” when there are an infinite number of possible codes
under consideration. One might ask whether there must exist
an optimal code or if there can be an infinite sequence of
codes of decreasing penalty without any code achieving the
limit penalty value. Fortunately the answer is the former, the
proof being a special case of Theorem 2 in [18]. The question
is then how to find one of these optimal source codes given
parametera and probability measureP .

As in the linear case, this is not known for generalP ,
but can be found for certain common distributions. In the
next section, we consider geometric distributions and find that
Golomb codes are optimal, although the optimal Golomb code
for a given probability mass function varies according toa.
The main result of Section II is that, forpθ(i) = (1−θ)θi and
a ∈ R+, Gk, the Golomb code with parameterk, is optimal
for

k = max (1, ⌈− logθ a − logθ(1 + θ)⌉) .

In Section III, we consider distributions that are relatively
light-tailed, that is, that decline faster than certain geometric
distributions. If there is a nonnegative integerr such that for
all j > r and i < j,

p(i) ≥ max



p(j),

∞
∑

k=j+1

p(k)ak−j





then an optimal binary prefix code can be found which is a
generalization of the unary code. A specific case of this is
the Poisson distribution, where an aforementionedr is given
by r = max(⌈2aλ⌉− 2, ⌈eλ⌉− 1) for pλ(i) = λie−λ/i!. Sec-
tion IV discusses the maximum pointwise redundancy penalty,
which has a similar solution with light-tailed distributions and
for which the Golomb code Gk with k = ⌈−1/log2θ⌉ is
optimal for with geometric distributions. Complete proofsand
illustrations, as well as additional results, are given in the full
version [12].



II. GEOMETRIC DISTRIBUTION WITH EXPONENTIAL

PENALTY

Consider the geometric distribution

pθ(i) = (1 − θ)θi

for parameterθ ∈ (0, 1). This distribution arises in run-length
coding as well as in other circumstances [3], [4].

For the traditional linear penalty, a Golomb code with
parameterk — or Gk — is optimal for θk + θk+1 ≤ 1 <
θk−1 +θk. Such a code consists of a unary prefix followed by
a binary suffix, the latter taking one ofk possible values. Ifk
is a power of two, all binary suffix possibilities have the same
length; otherwise, their lengthsσ(i) differ by at most1 and
∑

i 2−σ(i) = 1. Such binary codes are calledcomplete codes.
This defines the Golomb code; for example, the Golomb code
for k = 3 is:

i p(i) c(i)
0 1 − θ 0 0
1 (1 − θ)θ 0 10
2 (1 − θ)θ2 0 11
3 (1 − θ)θ3 10 0
4 (1 − θ)θ4 10 10
5 (1 − θ)θ5 10 11
6 (1 − θ)θ6 110 0
7 (1 − θ)θ7 110 10
...

...
...

where the space in the code separates the unary prefix from
the complete suffix. In general, codewordj for Gk is of the
form {1⌊j/k⌋0b(j mod k, k) : j ≥ 0}, whereb(j mod k, k) is
a complete binary code for the(j − k⌊j/k⌋+1)th of k items.

It turns out that such codes are optimal for the exponential
penalty:

Theorem 1: For a ∈ R+, if

θk + θk+1 ≤
1

a
< θk−1 + θk (2)

for k ≥ 1, then the Golomb code Gk is the optimal code for
Pθ. If no suchk exists, the unary code is optimal.

The proof of optimality (in full version [12]) uses the
procedure for exponential Huffman coding to find an optimal
exponential Huffman code for a sequence of similar finite
weight distributions. Define anm-reduced geometric source
Wm as:

wm(i) ,

{

(1 − θ)θi, 0 ≤ i ≤ m
(1−θ)aθi

1−aθk , m < i ≤ m + k

for any m ≥ −1. It can be shown that this distribution has
an optimal code with lengthsn(0) through n(m) that are
identical to the Golomb code in question. One can then show
that the optimal code for the geometric distribution must have
a penalty between that for the Golomb code for the geometric
distribution and the optimal code forWm (for any m). Since

the latter two penalties approach equality asm → ∞, the
Golomb code must be optimal.

This rule for finding an optimal Golomb Gk code is
equivalent to

k = max (1, ⌈− logθ a − logθ(1 + θ)⌉) .

This is a generalization of the traditional linear result since
this corresponds toa → 1. Cases in which the left inequality
of (2) is an equality have multiple solutions, as with linear
coding; see, e.g., [21, p. 289].

It is equivalent for the bits of the unary prefix to be reversed,
that is, to use{0⌊j/k⌋1b(j mod k, k) : j ≥ 0} (as in [4])
instead of{1⌊j/k⌋0b(j mod k, k) : j ≥ 0} (as in [3]). The
latter has the advantage of being alphabetic, that is,i > j if
and only if c(i) is lexicographically afterc(j).

A little algebra reveals that, for a distributionPθ and a
Golomb code with parameterk (lengthsNk),

La(Pθ, Nk) = loga

∑∞
i=0(1 − θ)θia(⌈ i+1−z

k ⌉+g)

= g + loga

(

1 + (a−1)θz

1−aθk

) (3)

where g = ⌊log2 k⌋ + 1 and z = 2g − k. Therefore,
Theorem 1 provides thek that minimizes (3). Ifa > 0.5,
the corresponding Rényi entropy is

Hα(a)(Pθ) = loga

1 − θ

(1 − θα(a))1/α(a)
(4)

where we recall thatα(a) = (1+log2a)−1. (Again,a ≤ 0.5 is
degenerate, an optimal code being unary with no correspond-
ing Rényi entropy.)

In evaluating the effectiveness of the optimal code, one
might use the following definition ofaverage pointwise re-
dundancy (or just redundancy):

R̄a(N, P ) , La(P, N) − Hα(a)(P ).

For nondegenerate values, we can plot theR̄a(N∗
θ,a, Pθ)

obtained from the minimization. This is done fora > 1 and
a < 1 in Fig. 1. Asa → 1, the plot approaches the redundancy
plot for the linear case, e.g., [4], reproduced as Fig. 2. In
many potential applications of nonlinear coding — such as
the aforementioned fora > 1 [9]–[11] anda < 1 [12], [13]
— a is very close to1. Since this analysis shows that the
Golomb code that is optimal for givena andθ is optimal not
only for these particular values, but for a range ofa (fixing θ)
and a range ofθ (fixing a), the Golomb code is, in some sense,
much more robust and general than previously appreciated.

III. OTHER INFINITE SOURCES

In this section we consider another type of probability dis-
tribution for binary coding, a type with a light tail. Humblet’s
approach [22], later extended in [23], uses the fact that there
is always an optimal code consisting of a finite number of
nonunary codewords for any probability distribution with a
relatively light tail, one for which there is anr such that, for
all j > r and i < j, p(i) ≥ p(j) and p(i) ≥

∑∞
k=j+1 p(k).

Due to the additive nature of Huffman coding, the unary part
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Fig. 2. Redundancy of the optimal code for the geometric distribution with
the traditional linear penalty.

can be considered separately, and the remaining codewords
can be found via the Huffman algorithm. Once again, this has
to be modified for the exponential case.

We wish to show that the optimal code can be obtained
when there is a nonnegative integerr such that, for allj > r
and i < j,

p(i) ≥ max



p(j),

∞
∑

k=j+1

p(k)ak−j



 .

The optimal code is obtained by considering the reduced
alphabet consisting of symbols0, 1, . . . , r + 1 with weights

w(i) =

{

p(i), i ≤ r
∑∞

k=r+1 p(k)ak−r, i = r + 1.
(5)

Apply exponential Huffman coding to this reduced set of
weights. For items0 throughr, the Huffman codewords for
the reduced and the infinite alphabets are identical. Each other
item i > r has a codeword consisting of the reduced codeword

for item r + 1 (which, without loss of generality, consists of
all 1’s) followed by the unary code fori− r−1. We call such
codesunary-ended.

Theorem 2: Let p(·) be a probability measure on the set of
nonnegative integers, and leta be the parameter of the penalty
to be optimized. If there is a nonnegative integerr such that
for all j > r and i < j,

p(i) ≥ max



p(j),

∞
∑

k=j+1

p(k)ak−j



 (6)

then there exists a minimum-penalty binary prefix code with
every codewordj > r consisting ofj−x 1’s followed by one
0 for some fixed nonnegative integerx.

The proof of optimality (in full version [12]) is similar to
that for the geometric distribution. In this case, for a given
m ≥ −1, the corresponding codeword weights are

wm(i) =

{

p(i), i < imax
∑∞

k=imax
p(k)ak−imax+1, i = imax

where imax = r + m + 2. For a < 1, the proof is outlined
similarly to that for the geometric case. Fora > 1, the key
is to note that the combined weight of a node in an optimal
code is upper-bounded by the weight of a node with the same
children in a code for which the node is the root of a unary
subtree. This allows an inductive proof that the unary subtree
— and thus the proposed code — is optimal.

Consider the example of optimal codes for the Poisson
distribution,

pλ(i) =
λie−λ

i!
.

How does one find a suitable value forr in such a case? It has
been shown thatr ≥ ⌈eλ⌉−1 yieldsp(i) ≥ p(j) for all j > r
and i < j, satisfying the first condition of Theorem 2 [22].



Moreover, if, in addition,j ≥ ⌈2aλ⌉−1 (and thusj > aλ−1),
then

∑∞
k=1 p(j + k)ak

= e−λλj

j!

[

aλ
j+1 + a2λ2

(j+1)(j+2) + · · ·
]

< p(j)
[

aλ
j+1 + a2λ2

(j+1)2 + · · ·
]

= p(j)
aλ

j+1

1− aλ
j+1

≤ p(j)
≤ p(i).

Thus, since we considerj > r, r = max(⌈2aλ⌉−2, ⌈eλ⌉−1)
is sufficient to establish anr such that the above method yields
the optimal infinite-alphabet code.

In order to find the optimal reduced code, use

w−1(r + 1) =

∞
∑

k=r+1

p(k)ak−r

= a−reλ(a−1) −

r
∑

k=0

p(k)ak−r.

For example, consider the Poisson distribution withλ = 1. We
code this for botha = 1 anda = 2. For both values,r = 2,
so both are easy to code. Fora = 1, w−1(3) = 1− 2.5e−1 ≈
0.0803 . . ., while, for a = 2, w−1(3) = 0.25e − 1.25e−1 ≈
0.2197 . . .. After using the appropriate Huffman procedure on
each reduced source of4 weights, we find that the optimal
code fora = 1 has lengthsN = {1, 2, 3, 4, 5, 6, . . .} — those
of the unary code — while the optimal code fora = 2 has
lengthsN = {2, 2, 2, 3, 4, 5, . . .}.

IV. REDUNDANCY PENALTIES

It is natural to ask whether the above results can be extended
to other penalties. One penalty discussed in the literatureis that
of maximal pointwise redundancy [24], in which one seeks to
find a code to minimize

R∗(N, P ) , max
i∈X

[n(i) + log2p(i)].

This can be shown to be a limit of the exponential case, as
in [25], allowing us to analyze it using the same techniques
as exponential Huffman coding. This limit can be shown by
definingdth exponential redundancy as follows:

Rd(N, P ) , 1
d log2

∑

i∈X p(i)2d(n(i)+log2p(i))

= 1
d log2

∑

i∈X p(i)1+d2dn(i).

ThusR∗(N, P ) = limd→∞ Rd(N, P ), and the above methods
should apply in the limit. In particular, the Golomb code Gk
for k = ⌈−1/log2θ⌉ is optimal for minimizing maximum
pointwise redundancy forPθ. For light tails, a similar con-
dition to (6) holds; in this case, we find anr such that,

for all i < r, p(i) ≥ p(r)

and
for all j ≥ r, p(j) ≥ 2p(j + 1).

Applications and proofs of these results are in the full version
[12].
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