Reserved-Length Prefix Coding

Michael B. Baer
vLnks
Mountain View, CA 94041-2803, USA
Email: calbea@ieee.org

_ Abstract— Huffman coding finds an optimal prefix code for a in the next section, there is no loss of generality in assgmin
given probability mass function. Consider situations in whch this set to be finite). The problem is well-formed if and orfly i

one wishes to find an optimal code with the restriction that Aja| = logyn. In such problems, if the cumulative distribution
all codewords have lengths that lie in a user-specified set of ;

lengths (or, equivalently, no codewords have lengths thaid in function iss; = 311 pi, wn is the number of codewords of
a complementary set). This paper introduces a polynomialitne length \,,, (so that}", = w,, = n), andQ,,, = >" | wy, then
dynamic programming algorithm that finds optimal codes for the expected codeword length is

this reserved-length prefix coding problem. This has appliations

to quickly encoding and decoding lossless codes. In additipone A1
modification of the approach solves any quasiarithmetic préx Zpili =AA — Z (Am+1 — Am)sq,, -
coding problem, while another finds optimal codes restrictd to icx m=1

the set of codes withg codeword lengths for user-specified . . .
(e.g.,g = 2). For small gnoughg, a subli?]ear-time constgnt-spagce Since the Kraft inequality then becomes
approach is even more efficient. |A|—1

D@~ Dwy, < 2V — 7

m=1
and —s; is a convex function ory, this is a convex opti-
mization problem if not restricted to the integers. Therefo
approximation techniques based on convex optimizatioridvou
be useful, particular for large. With this integer restriction,
%owever, an exact solution must be obtained in a different
manner.

This problem was the focus of research at BellCore around

|. INTRODUCTION

A source emits symbols drawn from the alphabét=
{1,2,...,n}. Symbol i has probability p;, thus defining
probability mass function vectgs. We assume without loss
of generality thatp; > 0 for everyi € X, and thatp; < p;
for everyi > j (i,j € X). The source symbols are coded int
binary codewords. The codewoeg corresponding to symbol
1 has length;, thus defining length vectdr

decompression. Perhaps the greatest bottleneck in fagt Huf
man decoding is the determination of codeword length from
k(l) = Z 2l <1, (1) input bits, which can be done using a lookup table, a linear

icx search, or a decision tree, depending on the complexity of

An exchange argument (e.g., [3, pp. 124-125]) easily sho&pse code involved [5]. The average time taken by a linear

; . . g search or an optimal decision tree increases with the nuofber
that an optimal code exists which has monotonic nondecreas-

. . ossible codeword lengths, so limiting the number of pdesib
ing lengths. Thus we can assume without loss of general . o)
- codeword lengths can make decoding faster; if the resulting
that such minimum-redundancy codes have- [; for every
P> (i€ X) : increase in expected codeword length is small or zero, this

There has been much work on solving this problem witsan be an effective way of trading off compression and speed,

other costs (objectives) and/or additional constrainis QOhe With no compression on one end of the spectrum and optimal

. : . compression on the other end.
especially useful constraint [5], [6] is that of length-lted Cc?nsider the optimal prefix code for random variatde
coding, in which

drawn from the Zipf distribution witth = 2'2, that is,

(McMillan) inequality [2]:

L€ 41,2, .. Lax) Vi 1
e) PZ=i] = —+—

for somel,,.x. A constraint that has received less attention is ZZ]‘:I J

the reserved-length constraint: which is approximately equal to the distribution of thenost

common words in the English language [8, p. 89]. This code
has codewords of3 different lengths, with an average length
for \; € Z,Vi. In this case, instead of restricting the range aif about8.78 bits. If one were to restrict this code to only
codeword lengths to an interval as in length-limited codihg allow codewords of lengths 5,9, 14}, the resulting optimal

is restricted to an arbitrary set of lengths. (As demonstratrestricted code would have an average length of abdtit

;e A= {/\1,/\2,...,)\|A‘}VZ’

bits. Although suboptimal, this restricted code would dixo can be in the open intervél — 277 1), and, furthermore, if
more quickly than the optimal unrestricted code. the longest codeword is of length > x — 1, the sum cannot

An O(n*)-time O(n%)-space dynamic programming ap-be in (1 — 27+ + 2% 1), This is shown by induction on
proach, introduced shortly, finds optimal reserved-lerfyth codeword lengths of nondecreasing order. Clearly
nary prefix codes. Variants of this algorithm solve a related 1 1
length constraint and any case of the quasiarithmetic godin Rl 2) =27 4+272 ¢ (3/4,1)
problem introduced by Campbell [9], extending the result fatisfies this. Suppose the Kraft sum for- 1 items cannot
[10]. fall in (1 —2-2*+1 1), that is, for any code for whick(l, = —

1) <1, k(l,z — 1) < 1 — 2721 Since thezth term is a
power of two, the partial sum of a code is no greater than
Many prefix coding problems — most notably binary Huff4 — 2=+ 4 2= = 1 — 2% for k(I,x) < 1. Moreover, if

man coding and binary length-limited “Huffman” coding —, > z, the partial sum is less than or equalte2=**!+2 =,
must return an optimal code in which the Kraft inequality (1) Now suppose there is an optimal code folitems which

is satisfied with equality, that is, for which(l) = 1. For includes codeword lengths, andi,, wheren — 2 < [, <
nonbinary problems, although the corresponding inequait [,. Assume without loss of generality that and(, are the
not always satisfied with equality, a simple modification ttongest codeword lengths argd = 1,, (i.e., I, is the longest
the problem changes this, causing the inequality to always ¢todeword length). Note that > n and the Kraft sum cannot
equal for optimal codes [1], [11]. This is not the case fogquall for any code in which the longest codeword has length
the reserved-length problem. For examplerif= 3 and the equal to or exceeding; it is well known that the deepest full
allowed lengths aré and3, then the optimal code must havetree is a terminated unary tree, one with depth- 1. Thus
lengthsl, 3, and3, resulting in a code for whick(l) = 0.75. k(l) < 1 — 2. Consider a code with length$ = I, for
Moreover, it is not clear how to determingl) for an optimal ¢ < n andl], = [,. We show that a prefix code exists with
code other than to calculate the optimal code itself. Thhese lengths and thus achieves greater compressionrirende
Huffman coding and most common length-limited approachésuboptimal. Ifl, =, + 1, then

rely onk(l) =1, so these methods cannot be used to find an
optimal code here.

The Kraft inequality is often explained in terms otaeding sincen < I, + 1. Otherwise/,, = I, > n, and
tree. A binary coding tree is a rooted binary tree in which the N L . 4l .
leaves represent items to be coded. Along the path to a leaf, Rl) = k(1) =27 +270 <1 -2 +27r =1
if the jth edge goes to the leftmost child, thth bit of the sincen — 1 < Ly m
codeword is &); otherwise, it is al. For a finite code tree,
the Kraft inequality is an equality if and only if every node . ALGORITHM
has0 or 2 children. This assumption needs to be relaxed for Since an optimal tree exists with has monotonic nondecreas-
finding an optimal reserved-length prefix code. ing lengthsw,,,, the number of leaves on each “allowed level”

One approach that does not requitd) = 1 is dynamic A, fully specifies this tree. For such an optimal trges A,
programming. Many prefix coding solutions use dynamitave a partial Kraft sum
programming techniques [4], e.g., finding optimal codes for m
which all codewords end with a ‘1’ bit [12], a situation in kix,, (1) 2 k(L vy) = ZwkTA’“
which, necessarily, a finite code cannot hayg) = 1. For the k=1
current problem, the dynamic programming algorithm shouldy ,, = sych that,, < A, and eithet;,, < A, O vy, = n.
find, for incregsing tree heights,.a set of (par_tial) cantidarhis Kraft sum is a multiple 0=, so there exists an,,,
trees from which to choose, and it should terminate when thgcp, thatic(l, vy,) = 1 — 5,2, and thisn,, is the number

longest allowed (feasible) length is encountered. We thks t f internal nodes on level,,, of any coding tree corresponding
a similar approach to that in [12], which is itself a varianfy the codeword lengths.

of the approach used in [13] to find optimal codes given | an optimal coding tree, i\, is defined to be\,, 1 —Am,
different output symbol costs. First, however, we have td finnen, for anyu,, < n,

the aforementioned longest feasible length, since we didn’

specify thatA, the set of allowed lengths, needed to be upper- 257 — (257 = 2) < n—vn . (2
bounded by any function af or even finite.

Theorem 1. Any codeword); of an optimal reserved-length
code either satisfieg < n — 2 or l; = Ao, Where), is the
smallest element oA that satisfies\.o > n — 2. This can be seen by observing that, if a code violates this, we

Proof: We first show that no partial Kraft sum afitems can produce a code with the same lengthsifathroughl,, ,
N and assign,,,, 1 = A, andl; = A\p4q for i > v, + 1,
Kk(l,z) 2 Z 9l and the new code would have no length exceeding that of the
= original code; in fact/,, 41 is strictly shorter, so the original

Il. PRELIMINARIES

kM) =r(l) =27 o le <127 po bl <

internal nodes next minus ~ leaves undem
single-node expansion factor

code could not be optimal. Fot,, ;1 = A, +1, this condition Algorithm 1 Dynamic programming method for reserved-
is identical to length prefix coding (with initialization of costs teo and

subsequent backtracking omitted for space)
Require: Cumulative distribution functior(-) corresponding
which is a looser necessary condition for optimality. For to p of sizen (not to be confused withy), A for which
similar reasons, no optimal tree will have a partial treehwit ~ (without loss of generality) 5|, <n —2
um = n — 1 for anym, since using an internal node on level 1 L[0,0, 1] < 0 {Trivial tree cos}
A for the final item results in an improved tree. 2: X« 0 {Previous level
Such properties can be used to construct a dynamic pré: for m — 1, |A| {Level by leve} do
gramming algorithm. In describing this algorithm, we use th 4 A A {Current leve}
following notation; mnemonics are in boldface and previgus 5 for all (v,n) € [0,n — 2] x [0, [n/2]] do

20 <N — U (3

defined values are included for clarity: 6: if L[m —1,v,7] < oo then

7: n' « n2> A" {Total nodes on new level,,}
Am mth allowed length 8: L' — Lim—1,v,n]+ (XN = X")(1 - sy)
PP Ams Am—1 for currentm o: if m < |A| {Build partial tree$ then
Si: cumulative distributiony"’_, p; 10: Umin < max(v,2(v +1') —n)
Uy used p leaves at or above level,, 11 Umax « min(v +7',n — 2) .
Umin, Umax : boUNds on feasible,, givenv,,_1 12: for v « Unin, Umax {Potentialv,, < n} do
n: nodes interral at level \ 13: if Lim,v",n" —v" 4+ v] > L' then
Y[m,v,n]: leaves above level,, 14: Lim,v',n —v" +v] «— L' {Partial cos}
Lim,v,n]: partial cost} ;" pil; + A Z?:va pi 15: T[m, o — v o] — o
Lunin : expected length of best (done) tree (so far) 16: end if
Mumin : m s.t. longest codeword of best trees, 17: end for
Mmin Nmo, TOr best tree 18: en-d if
Xmin : codewords of lendt A.i, in best tree 19: end if

20: if n <v+1n' then

The idea for the algorithm is to calculate the optimabi:
L[m,vm,nm] given feasible values of partial trees,(< 22
n — 1) and to separately keep track of the best finished tres:
(v, = mn) as the algorithm progresses. The trees grow hga:

if L’ < Ly {If best finished trep then
Luin < L' {save cost, etg.

(mmina Thmin Xmin) — (m, 77/ —n+uv, U)
end if

level (\,,, for increasingm determining the outer loop). The 2s5: end if

algorithm calculates, in its inner loops for each all feasible 26: end for

values ofv,, (which are in[0,n — 2] for partial trees) and 27:)\’ « X\ {Current level now previous levgl
nm (Which are in[0, [n/2]] for partial trees due to (3); if 28: end for

nm > n/2, at least one node on a lower level could be
shortened to length,,,, resulting in a strictly improved code).
Thus there areD(n?) values per level, and we can try all

feasible combinations, growing from the prior level with, A simple example of this algorithm at work is in finding
being max(vym_1,2(Um-1 + Tm_12* ") — n) and vm., an optimal code for Benford's law [14] with the restriction

being min(vm_1 + 7m-_12"~*",n — 2) due to the previous that all codeword lengths must be powers of two. In this case,
bounds or,, and the fact that,, must be nondecreasing.Pi iS logio(i + 1) — logy(é) for i from 1 to n = 9, and
We calculateL for all combinations of partial trees (saving thel = {1,2,4,8} is a sufficient range of lengths to allow, due
best combinations at a given po|nt) and finished trees (gavﬁﬁ) Theorem 1. The calculated values for each feasible [bartia
Linins Mmins Tmins @Nd Ymin for only the best finished tree L[m, v, 7] are shown in Table I.
encountered up to this point). Only strictly improved firgsh ~ On the first level \;, average length is identical to the level
trees get saved over older ones, so that the returned codaumber, and, if, for example); = 1, the nodes at the level
of minimal maximum length among optimal codes. In case&n include zero({,n) = (0,2)), one (1,1)), or two ((2,0))
where|A] is much smaller tham, additional constraints canterminating nodes, which are the only nontrivial entriesain
be made, based on (2), but we do not discuss them here. two-dimensional grid for this level, as indicated by thetfirs
After finishing level\ 5|, the optimal tree (code) is rebuiltgrid in Table I. From each nontrivial entry in the levé{
via backtracking. Assuming arithmetic operations are tamts grid, all allowed combinations of terminating and expaigdin
time, complexity of the dynamic programming algorithm isre considered until the second (level) grid is arrived at,
O(]A|n?)-time andO(|A|n?)-space. Becaugd\| < n without and the algorithm proceeds similarly until all allowed lisve
loss of generality, if we assume arithmetic operations aage accounted for. Each tree with= n (all leaves accounted
constant time, time complexity should ig(n*) and space for) is compared with the best one so far in order to find an
complexity O(n?). optimal tree. In the example, this is a tree with two codeword

Ppeenord = {0.301, 0.176, 0.125,0.097, 0.079, 0.067, 0.058,0.051, 0.046}, A = (1,2,4,8)
Level \1 =1 (m=1)

| [vi=0 T 2 3 1 5 § 7]
m =20 00 oo 1.000(0) 00 00 00 00 00
1 oo 1.000(0) () () () () 00 00
2 || 1.000 (0) o9 0 00 0 0 0 0o
3 oo oo 00 00 00 00 00 00
4 00 00 00 00 00 00 00 00
Level \o =2 (m =2)
| [vz=0 T 2 3 1 5 6 7]
n2=20 00 oo 1.523(2) 1.699(1) 2.000(0) 00 00 00
1 0 co 1.699(1) 2.000(0) () () () 0
2 oo 1.699(1) 2.000 (0) oo oo oo oo oo
3 oo 2.000(0)) () () () () 9]
4 || 2.000(0) 00 00 00 00 00 00 00
Level \3 =4 (m =3)
| [ws=0 T 2 3 1 5 G 7]
U3 =0 oo oo 2.560(2) 2.495(3) 2.602(4) oo 2.745(2) 2.796(3)
1 0o 00 00 00 oo 2.745(2) 2.796(3) o
2 00 00 (3] oo 2.745(2) 2.796(3) (3] 00
3 0 00 oo 2.745(2) () () 0o 00
4 00 00 00 00 00 00 00 00
TABLE |

GRIDS FOR FINDING RESERVEBLENGTH SOLUTION VIA DYNAMIC PROGRAMMING. EACH VALUE REPRESENTS OPTIMAL PARTIAL COST FOR A GIVEN),
v, AND LEVEL A\, WITH NUMBER OF LEAVES ABOVE THE GIVEN LEVEL GIVEN IN PARENTHESES THE PARTIAL TREES USED IN THE OPTIMAL RESULT—
THAT TERMINATED WITH (m,v,n) = (3,9,2) HAVING I = {2,2,4,4,4,4,4,4,4} — ARE SHOWN IN BOLDFACE

of length two and seven codewords of length four. solution, and A still has cardinality less tham, so the

Note that a similar approach could be used for nonbinagjgorithm proceeds similarly for identical reasons, andsth
trees, although an efficient exponentiation procedure evoukith the same complexity. A nonbinary coding extension is
need to be used where simple shifting sufficed to calculaganilar to that used to minimize expected length.

nm-12" """ in the binary case. The aforementioned expansiongefore discussing another extension, we should note that
bounds (anywhere we have factors of two) also need adjugfe aforementioned algorithm is needlessly slow for siagll
ment for nonbinary cases. These alternations do not worgegy example, ifA| = 2 then, due to monotonicity and the
computational complexity. Kraft inequality, the solution is independent of the praitigh
distribution, and there should bg2*2 — n)/(2*2=* — 1)]
codewords of length\;, with the rest having length.. For
The aforementioned method yields a prefix code minimizingrger values, the problem is a convex optimization problem
expected length for a known finite probability mass functiofith a simple linear constraints, as noted in the introdurcti
under the given constraints. However, there are many varigdA| = 3, one can do binary search over the differences of
instances in which expected length is not the proper value dgnsecutive feasible values af, finding the minimum over
minimize [4]. Many such problems are in a certain familfeasible lengths. Given;, the other values are directly calcu-
of generalizations of the Huffman problem introduced bjated. This solves the problem @i(logn) time and constant
Campbell in [15]. space given{s;}, a properly sorted cumulative distribution
While Huffman coding minimizes ;. , p;l;, Campbell's function corresponding to the sorted probability mass fionc
quasiarithmetic formulation adds a continuous (striathgno- For larger values ofA|, standard convex optimization tech-
tonic increasingeost function (1) : Ry — Ry. The value to njiques [16] find a numerical solution not restricted to irtesgy
minimize is then i.e., one that might correspond 204 codewords of length; .
Finding the optimal integer solution given the aforememeic
Lp,lp) £ o (ZPM(M) . numerical solution grows exponentially difficult due to the
ieXx curse of dimensionality, and thus the dynamic programming

Convexy have been solved for [10]. For nonconvex func@PProach is best for all but the smallgt.
tions, it suffices to calculate the partial cdstn, v, 7| from As previously stated, one purpose for reserving lengths is t
one level to another & «— L[i—1, v, n]+(p(N)—p(N\"))(1— allow faster decoding by having fewer codewords. However,
sy) Instead of L «— L[i — 1,v,n] + (N — N')(1 — s,). if this is the objective, the problem remains of how to select
The exchange argument still holds, resulting in a monotortite codeword lengths to use. We might, for example, restrict

IV. EXTENSIONS

our solution to having two codeword lengths, but not put any, as the values in question). We can stop the algorithm
restrictions on what these codeword lengths should be. &ucim an early iteration or even skip it entirely, instead using
problem was examined analytically in [17] farapproaching equiprobable partitions. We can optimizegiven the partition
infinity. Here, we consider solving the problem for fixed we choose. Solving yield$; = log,(wy/qx), Where g, =

One approach to the two-length problem would be to try adl,, — sq,_,, the sum probability of partitiort. Rounding to
feasible combinations of codeword lengths. We then have itdeger values for the lengths, we can find a corresponding op
find a feasible set, hopefully one relatively small so as pot timal or approximated code. Details of such an approxinmatio
drastically increase the complexity of the problem. technique are beyond the scope of this discussion, althiiugh

First note that, if only one codeword length is used, thdmears noting that the expected “length” for this real-vdlie
A2 = A1 = [logyn]. Otherwise, we begin by observing thatjs > i (log,wy, — logsqx), or the sum of the entropy of the
for the best tree, the number of internal nodes and leaves artition (the bits needed to code which part of the partitio
the first allowed level\; must each be greater thanor else the element is in) and the expected value of the logarithm of
only one codeword length could be used) and combined thee part size (the bits needed to determine, via a fixed4engt
no greater tham — 1 (or else a better code exists with allcode on the part, which element of the part is in question).
codewords having one length). Thas < log,(n —1), or, put Nevertheless, for smafj andn the dynamic programming
another way\; < [log,n] — 1. At the same time, the secondapproach suffices, and alf-length problems, fory’ < g¢,
allowed level cannot haven — 2 or more combined internal can be solved with similar complexity, allowing for a selec-
nodes and leaves; otherwise an improved tree can be foundiby of the desired trade-off between number of codeword
decreasing\s by one, since no more than— 1 leaves can be lengths (speed) and expected codeword length (compression
on this level. Because these nodes are all descendants ok#iitiency). Maodifications can enact additional restriocon
least one internal node on the first allowed level, this tessucodeword lengths (e.g., a limit on maximum length) in a
in 222=% < 2n — 2, which leads to\y — A\; < [logy(n — straightforward fashion.

1)] < [logon]. Combining these results, we find that <
2[log,n] — 1.

This result, while not the strictest bound possible, is suffilll D.A. I-luffman, “A method for the construction of minimunedundancy
cient for us to determine that the number of codeword length, g?c,{,'fs,’wmfﬁ" "‘55(’)}’22(412{"325 ?ﬁqgﬁédl%f,sl}ﬁégé’ dii?;&;éﬁé}, RE
combinations one would have to try would ©¢log? n). Thus, Trans. Inf. Theory, vol. IT-2, no. 4, pp. 115-116, Dec. 1956.
Since|A| — 2 in all cases (running in constant time per Casejs] T. Cover and_ J. Thomaglements of Information Theory, 2nd ed. New

. York, NY: Wiley-Interscience, 2006.
E.md only ConStant'Space data need be kgpt betwe.en Comblm'.]. Abrahams, “Code and parse trees for lossless sourcedim,”
tions, the algorithm has only é)(log2 n) time requirement Communications in Information and Systems, vol. 1, no. 2, pp. 113—
anq a0(1) space requirement givefs, }. For ?Xample’ the 5] i4(|5\}lcﬁ°fpart. sr?glA Turpin, “On the implementation of minimu redun-
optimal two-length code for the Benford distribution hatw dancy prefix codes JEEE Trans. Commun., vol. 45, no. 10, pp. 1200
codewords of length two and seven codewords of length four. 1207, Oct. 1997.
This also happens to be the code found above to be optimal ft llirgh\c/;/si,tégn'c ':-. ’KIAO(Ifraté r?r}?alfn?aeghMgﬂzﬂisnr?e?sig?%? 2nd ed. San
lengths restricted to powers of two, and ha; average co@bw | Z. Zhang, Private cgmmunication, Feb. 2005, :
length 3.04 ..., very near to that of the optimal unrestricted[s] G. K. Zipf, “Relative frequency as a determinant of phtaehange,”

Huffman code, which has average codeword lerigfl2 Harvard Sudies in Classical Philology, vol. 40, pp. 1-95, 1929.
[9] L. L. Campbell, “Block coding and Rényi's entropyfit. J. Math. Sat.

REFERENCES

The two-length problem’s solution can be easily generdlize ., vol. 6, no. 1, pp. 4147, June 1997,
to that of ag-length problem. Fory = |A| = 3, we can [10] M. B. Baer, “Source coding for quasiarithmetic peresif |EEE Trans.
use the aforementione@(logn) binary search method for _ Inf. Theory, vol. IT-52, no. 10, pp. 4380-4393, Oct. 2006.

. . 4 11] ——, “D-ary bounded-length Huffman coding,” iRroc., 2007 |IEEE
each feasible value, thus SOIVmg the pI’OblemOl(llog n) Int. Symp. on Information Theory, June 24—-29, 2007, pp. 896—900.

time. For an already-known pre-sorted cumulative distiiou [12] S.-L."Chan and M. J. Golin, “A dynamic programming aigam for
function, then, one can actually solve these problems more constructing optimal “1"-ended binary prefix-free codedFEE Trans.

] " N Inf. Theory, vol. IT-46, no. 4, pp. 1637-1644, July 2000.
quickly than finding the optimal Huffman code. However, 883) M. J. Golin and G. Rote, “A dynamic programming algorithfor

g increases, the curse of dimensionality affects not only the constructing optimal prefix-free codes for unequal lettests,” IEEE
convex optimization approach, but any approach that ex@gnin _ Trans. Inf. Theory, vol. IT-44, no. 5, pp. 1770-1781, Sept. 1998.

. N 4] F. Benford, “The law of I ber®foc. Amer. Phil. Soc.,
all feasible combinations of allowed codeword lengthsyJf 14 ol g, p%_asv‘élo_;;gorpﬂif“fgggm ersoc. Amer. Fhil. e

is upper bounded by (approximately)log,n, then we can [15] L. L. Campbell, “Definition of entropy by means of a cogiproblem,”
only say that there are no more thgﬂlogggn combinations, Z. \ahrscheinlichkeitstheorie und verwandte Gebiete, vol. 6, pp. 113—

which is not workable except for the smallest values; of 118, 1966. L .
p g [16] S. Boyd and L. Vandenberghe&onvex Optimization. Cambridge,

For large enough values of approximation algorithms may UK: Cambridge Univ. Press, 2003, available at http:/wvtangord.edu/
be called for, due to the increased granularity of the ptesib Ebgyd/CVwakahtchH i “on th totic redungiaf lossl
. Flgueroa an . Fouare, n the asymptotic redun ossless
integer solutions. Let us b”eﬂy sketch one approach. S'n block coding with two codeword lengthdEEE Trans. Inf. Theory, vol.
codeword lengths should be around clusters of probalsilitie 17-51, no. 2, pp. 688-692, Feb. 2005.
if any, we can use Lond’s algorithm [18] to cluster thd18] A.Gersho and R. M. Grayector Quantization and Signal Compression.

probabilities (using “deal Iengths(’— logpi), Weighted by Boston, MA: Kluwer Academic Publishers, 1992.

