
Reserved-Length Prefix Coding
Michael B. Baer

vLnks
Mountain View, CA 94041-2803, USA

Email:.calbear@1̇eee.org

Abstract— Huffman coding finds an optimal prefix code for a
given probability mass function. Consider situations in which
one wishes to find an optimal code with the restriction that
all codewords have lengths that lie in a user-specified set of
lengths (or, equivalently, no codewords have lengths that lie in
a complementary set). This paper introduces a polynomial-time
dynamic programming algorithm that finds optimal codes for
this reserved-length prefix coding problem. This has applications
to quickly encoding and decoding lossless codes. In addition, one
modification of the approach solves any quasiarithmetic prefix
coding problem, while another finds optimal codes restricted to
the set of codes withg codeword lengths for user-specifiedg
(e.g.,g = 2). For small enoughg, a sublinear-time constant-space
approach is even more efficient.

I. I NTRODUCTION

A source emits symbols drawn from the alphabetX =
{1, 2, . . . , n}. Symbol i has probability pi, thus defining
probability mass function vectorp. We assume without loss
of generality thatpi > 0 for every i ∈ X , and thatpi ≤ pj

for everyi > j (i, j ∈ X). The source symbols are coded into
binary codewords. The codewordci corresponding to symbol
i has lengthli, thus defining length vectorl.

It is well known that Huffman coding [1] yields a prefix
code minimizing expected value given the natural coding
constraints: the integer constraint,li ∈ Z+, and the Kraft
(McMillan) inequality [2]:

κ(l) ,
∑

i∈X

2−li ≤ 1. (1)

An exchange argument (e.g., [3, pp. 124-125]) easily shows
that an optimal code exists which has monotonic nondecreas-
ing lengths. Thus we can assume without loss of generality
that such minimum-redundancy codes haveli ≥ lj for every
i > j (i, j ∈ X).

There has been much work on solving this problem with
other costs (objectives) and/or additional constraints [4]. One
especially useful constraint [5], [6] is that of length-limited
coding, in which

li ∈ {1, 2, . . . , lmax}∀i

for somelmax. A constraint that has received less attention is
the reserved-length constraint:

li ∈ Λ = {λ1, λ2, . . . , λ|Λ|}∀i

for λi ∈ Z+∀i. In this case, instead of restricting the range of
codeword lengths to an interval as in length-limited coding, it
is restricted to an arbitrary set of lengths. (As demonstrated

in the next section, there is no loss of generality in assuming
this set to be finite). The problem is well-formed if and only if
λ|Λ| ≥ log2n. In such problems, if the cumulative distribution
function issj ,

∑j

i=1
pi, ωm is the number of codewords of

lengthλm (so that
∑

m ωm = n), andΩm ,
∑m

k=1
ωk, then

the expected codeword length is

∑

i∈X

pili = λ|Λ| −

|Λ|−1
∑

m=1

(λm+1 − λm)sΩm
.

Since the Kraft inequality then becomes

|Λ|−1
∑

m=1

(2λ|Λ|−λm − 1)ωm ≤ 2λ|Λ| − n

and −sj is a convex function onj, this is a convex opti-
mization problem if not restricted to the integers. Therefore,
approximation techniques based on convex optimization would
be useful, particular for largen. With this integer restriction,
however, an exact solution must be obtained in a different
manner.

This problem was the focus of research at BellCore around
1989 to 1990, but, due to the lack of a solution, never
published [7]. A practical application is that of fast data
decompression. Perhaps the greatest bottleneck in fast Huff-
man decoding is the determination of codeword length from
input bits, which can be done using a lookup table, a linear
search, or a decision tree, depending on the complexity of
the code involved [5]. The average time taken by a linear
search or an optimal decision tree increases with the numberof
possible codeword lengths, so limiting the number of possible
codeword lengths can make decoding faster; if the resulting
increase in expected codeword length is small or zero, this
can be an effective way of trading off compression and speed,
with no compression on one end of the spectrum and optimal
compression on the other end.

Consider the optimal prefix code for random variableZ
drawn from the Zipf distribution withn = 212, that is,

P[Z = i] =
1

i
∑n

j=1
j−1

which is approximately equal to the distribution of then most
common words in the English language [8, p. 89]. This code
has codewords of13 different lengths, with an average length
of about8.78 bits. If one were to restrict this code to only
allow codewords of lengths in{5, 9, 14}, the resulting optimal
restricted code would have an average length of about9.27

bits. Although suboptimal, this restricted code would decode
more quickly than the optimal unrestricted code.

An O(n4)-time O(n3)-space dynamic programming ap-
proach, introduced shortly, finds optimal reserved-lengthbi-
nary prefix codes. Variants of this algorithm solve a related
length constraint and any case of the quasiarithmetic coding
problem introduced by Campbell [9], extending the result of
[10].

II. PRELIMINARIES

Many prefix coding problems — most notably binary Huff-
man coding and binary length-limited “Huffman” coding —
must return an optimal code in which the Kraft inequality (1)
is satisfied with equality, that is, for whichκ(l) = 1. For
nonbinary problems, although the corresponding inequality is
not always satisfied with equality, a simple modification to
the problem changes this, causing the inequality to always be
equal for optimal codes [1], [11]. This is not the case for
the reserved-length problem. For example, ifn = 3 and the
allowed lengths are1 and3, then the optimal code must have
lengths1, 3, and3, resulting in a code for whichκ(l) = 0.75.
Moreover, it is not clear how to determineκ(l) for an optimal
code other than to calculate the optimal code itself. The
Huffman coding and most common length-limited approaches
rely on κ(l) = 1, so these methods cannot be used to find an
optimal code here.

The Kraft inequality is often explained in terms of acoding
tree. A binary coding tree is a rooted binary tree in which the
leaves represent items to be coded. Along the path to a leaf,
if the jth edge goes to the leftmost child, thejth bit of the
codeword is a0; otherwise, it is a1. For a finite code tree,
the Kraft inequality is an equality if and only if every node
has0 or 2 children. This assumption needs to be relaxed for
finding an optimal reserved-length prefix code.

One approach that does not requireκ(l) = 1 is dynamic
programming. Many prefix coding solutions use dynamic
programming techniques [4], e.g., finding optimal codes for
which all codewords end with a ‘1’ bit [12], a situation in
which, necessarily, a finite code cannot haveκ(l) = 1. For the
current problem, the dynamic programming algorithm should
find, for increasing tree heights, a set of (partial) candidate
trees from which to choose, and it should terminate when the
longest allowed (feasible) length is encountered. We thus take
a similar approach to that in [12], which is itself a variant
of the approach used in [13] to find optimal codes given
different output symbol costs. First, however, we have to find
the aforementioned longest feasible length, since we didn’t
specify thatΛ, the set of allowed lengths, needed to be upper-
bounded by any function ofn or even finite.

Theorem 1: Any codewordli of an optimal reserved-length
code either satisfiesli ≤ n− 2 or li = λ∞, whereλ∞ is the
smallest element ofΛ that satisfiesλ∞ > n− 2.

Proof: We first show that no partial Kraft sum ofx items

κ(l, x) ,

x∑

i=1

2−li

can be in the open interval(1 − 2−x, 1), and, furthermore, if
the longest codeword is of lengthlx > x− 1, the sum cannot
be in (1 − 2−x+1 + 2−lx , 1). This is shown by induction on
codeword lengths of nondecreasing order. Clearly

κ(l, 2) = 2−l1 + 2−l2 /∈ (3/4, 1)

satisfies this. Suppose the Kraft sum forx − 1 items cannot
fall in (1− 2−x+1, 1), that is, for any code for whichκ(l, x−
1) < 1, κ(l, x − 1) ≤ 1 − 2−x+1. Since thexth term is a
power of two, the partial sum of a code is no greater than
1 − 2−x+1 + 2−x = 1 − 2−x for κ(l, x) < 1. Moreover, if
lx ≥ x, the partial sum is less than or equal to1−2−x+1+2−lx .

Now suppose there is an optimal code forn items which
includes codeword lengthslµ and lν , wheren − 2 < lµ <
lν . Assume without loss of generality thatlµ and lν are the
longest codeword lengths andlν = ln (i.e., lν is the longest
codeword length). Note thatlν ≥ n and the Kraft sum cannot
equal1 for any code in which the longest codeword has length
equal to or exceedingn; it is well known that the deepest full
tree is a terminated unary tree, one with depthn − 1. Thus
κ(l) < 1 − 2−n. Consider a code with lengthsl′i = li for
i < n and l′n = lµ. We show that a prefix code exists with
these lengths and thus achieves greater compression, rendering
l suboptimal. Iflν = lµ + 1, then

κ(l′) = κ(l)− 2−lµ−1 + 2−lµ ≤ 1− 2−n + 2−lµ−1 ≤ 1

sincen ≤ lµ + 1. Otherwise,ln = lν ≥ n, and

κ(l′) = κ(l)− 2−lν + 2−lµ ≤ 1− 2−n+1 + 2−lµ ≤ 1

sincen− 1 ≤ lµ.

III. A LGORITHM

Since an optimal tree exists with has monotonic nondecreas-
ing lengths,ωm, the number of leaves on each “allowed level”
λm, fully specifies this tree. For such an optimal tree,li ≤ λm

have a partial Kraft sum

κλm
(l) , κ(l, υm) =

m∑

k=1

ωk2−λk

for υm such thatlυm
≤ λm and eitherl1+υm

≤ λm or υm = n.
This Kraft sum is a multiple of2−λm , so there exists anηm

such thatκ(l, υm) = 1− ηm2−λm , and thisηm is the number
of internal nodes on levelλm of any coding tree corresponding
to the codeword lengths.

In an optimal coding tree, if∆m is defined to beλm+1−λm,
then, for anyυm < n,

ηm2∆m − (2∆m − 2)
︸ ︷︷ ︸

internal nodes next minus
single-node expansion factor

≤ n− υm
︸ ︷︷ ︸

leaves underm

. (2)

This can be seen by observing that, if a code violates this, we
can produce a code with the same lengths forl1 throughlυm

and assignlυm+1 = λm and li = λm+1 for i > υm + 1,
and the new code would have no length exceeding that of the
original code; in fact,lυm+1 is strictly shorter, so the original

code could not be optimal. Forλm+1 = λm +1, this condition
is identical to

2ηm ≤ n− υm (3)

which is a looser necessary condition for optimality. For
similar reasons, no optimal tree will have a partial tree with
υm = n− 1 for any m, since using an internal node on level
λm for the final item results in an improved tree.

Such properties can be used to construct a dynamic pro-
gramming algorithm. In describing this algorithm, we use the
following notation; mnemonics are in boldface and previously
defined values are included for clarity:

λm : mth allowed length
λ′, λ′′ : λm, λm−1 for currentm
si : cumulative distribution

∑i

j=1 pj

υm : used up leaves at or above levelλm

υmin, υmax : bounds on feasibleυm given υm−1

η : nodes internal at level λ′′

Υ[m, υ, η] : leaves above levelλm

L[m, υ, η] : partial cost
∑υm

i=1
pili + λm

∑n

i=1+υm
pi

Lmin : expected length of best (done) tree (so far)
mmin : m s.t. longest codeword of best tree isλm

ηmin : ηmmin
for best tree

χmin : codewords of length λmin in best tree

The idea for the algorithm is to calculate the optimal
L[m, υm, ηm] given feasible values of partial trees (υm <
n − 1) and to separately keep track of the best finished tree
(υm = n) as the algorithm progresses. The trees grow by
level (λm for increasingm determining the outer loop). The
algorithm calculates, in its inner loops for eachm, all feasible
values ofυm (which are in [0, n − 2] for partial trees) and
ηm (which are in [0, ⌊n/2⌋] for partial trees due to (3); if
ηm > n/2, at least one node on a lower level could be
shortened to lengthλm, resulting in a strictly improved code).
Thus there areO(n2) values per level, and we can try all
feasible combinations, growing from the prior level withυmin

being max(υm−1, 2(υm−1 + ηm−12
λ′−λ′′

) − n) and υmax

being min(υm−1 + ηm−12
λ′−λ′′

, n − 2) due to the previous
bounds onηm and the fact thatυm must be nondecreasing.
We calculateL for all combinations of partial trees (saving the
best combinations at a given point) and finished trees (saving
Lmin, mmin, ηmin, and χmin for only the best finished tree
encountered up to this point). Only strictly improved finished
trees get saved over older ones, so that the returned code is
of minimal maximum length among optimal codes. In cases
where|Λ| is much smaller thann, additional constraints can
be made, based on (2), but we do not discuss them here.

After finishing levelλ|Λ|, the optimal tree (code) is rebuilt
via backtracking. Assuming arithmetic operations are constant-
time, complexity of the dynamic programming algorithm is
O(|Λ|n3)-time andO(|Λ|n2)-space. Because|Λ| < n without
loss of generality, if we assume arithmetic operations are
constant time, time complexity should beO(n4) and space
complexityO(n3).

Algorithm 1 Dynamic programming method for reserved-
length prefix coding (with initialization of costs to∞ and
subsequent backtracking omitted for space)

Require: Cumulative distribution functions(·) corresponding
to p of size n (not to be confused withη), Λ for which
(without loss of generality)λ|Λ|−1 ≤ n− 2

1: L[0, 0, 1]← 0 {Trivial tree cost}
2: λ′′ ← 0 {Previous level}
3: for m← 1, |Λ| {Level by level} do
4: λ′ ← λm {Current level}
5: for all (υ, η) ∈ [0, n− 2]× [0, ⌊n/2⌋] do
6: if L[m− 1, υ, η] <∞ then
7: η′ ← η2λ′−λ′′

{Total nodes on new levelλm}
8: L′ ← L[m− 1, υ, η] + (λ′ − λ′′)(1 − sυ)
9: if m < |Λ| {Build partial trees} then

10: υmin ← max(υ, 2(υ + η′)− n)
11: υmax ← min(υ + η′, n− 2)
12: for υ′ ← υmin, υmax {Potentialυm < n} do
13: if L[m, υ′, η′ − υ′ + υ] > L′ then
14: L[m, υ′, η′ − υ′ + υ]← L′ {Partial cost}
15: Υ[m, υ′, η′ − υ′ + υ]← υ
16: end if
17: end for
18: end if
19: end if
20: if n ≤ υ + η′ then
21: if L′ < Lmin {If best finished tree} then
22: Lmin ← L′ {save cost, etc.}
23: (mmin, ηmin, χmin)← (m, η′ − n + υ, υ)
24: end if
25: end if
26: end for
27: λ′′ ← λ′ {Current level now previous level}
28: end for

A simple example of this algorithm at work is in finding
an optimal code for Benford’s law [14] with the restriction
that all codeword lengths must be powers of two. In this case,
pi is log10(i + 1) − log10(i) for i from 1 to n = 9, and
Λ = {1, 2, 4, 8} is a sufficient range of lengths to allow, due
to Theorem 1. The calculated values for each feasible partial
L[m, υ, η] are shown in Table I.

On the first level,λ1, average length is identical to the level
number, and, if, for example,λ1 = 1, the nodes at the level
can include zero ((υ, η) = (0, 2)), one ((1, 1)), or two ((2, 0))
terminating nodes, which are the only nontrivial entries ina
two-dimensional grid for this level, as indicated by the first
grid in Table I. From each nontrivial entry in the levelλ1

grid, all allowed combinations of terminating and expanding
are considered until the second (levelλ2) grid is arrived at,
and the algorithm proceeds similarly until all allowed levels
are accounted for. Each tree withυ = n (all leaves accounted
for) is compared with the best one so far in order to find an
optimal tree. In the example, this is a tree with two codewords

pBenford ≈ {0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046}, Λ = (1, 2, 4, 8)

Level λ1 = 1 (m = 1)
υ1 = 0 1 2 3 4 5 6 7

η1 = 0 ∞ ∞ 1.000(0) ∞ ∞ ∞ ∞ ∞
1 ∞ 1.000(0) ∞ ∞ ∞ ∞ ∞ ∞
2 1.000 (0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Level λ2 = 2 (m = 2)
υ2 = 0 1 2 3 4 5 6 7

η2 = 0 ∞ ∞ 1.523(2) 1.699(1) 2.000(0) ∞ ∞ ∞
1 ∞ ∞ 1.699(1) 2.000(0) ∞ ∞ ∞ ∞
2 ∞ 1.699(1) 2.000 (0) ∞ ∞ ∞ ∞ ∞
3 ∞ 2.000(0) ∞ ∞ ∞ ∞ ∞ ∞
4 2.000(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞

Level λ3 = 4 (m = 3)
υ3 = 0 1 2 3 4 5 6 7

υ3 = 0 ∞ ∞ 2.569(2) 2.495(3) 2.602(4) ∞ 2.745(2) 2.796(3)
1 ∞ ∞ ∞ ∞ ∞ 2.745(2) 2.796(3) ∞
2 ∞ ∞ ∞ ∞ 2.745(2) 2.796(3) ∞ ∞
3 ∞ ∞ ∞ 2.745(2) ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

TABLE I

GRIDS FOR FINDING RESERVED-LENGTH SOLUTION VIA DYNAMIC PROGRAMMING. EACH VALUE REPRESENTS OPTIMAL PARTIAL COST FOR A GIVENη,

υ, AND LEVEL λ, WITH NUMBER OF LEAVES ABOVE THE GIVEN LEVEL GIVEN IN PARENTHESES. THE PARTIAL TREES USED IN THE OPTIMAL RESULT—

THAT TERMINATED WITH (m, υ, η) = (3, 9, 2) HAVING l = {2, 2, 4, 4, 4, 4, 4, 4, 4} — ARE SHOWN IN BOLDFACE.

of length two and seven codewords of length four.
Note that a similar approach could be used for nonbinary

trees, although an efficient exponentiation procedure would
need to be used where simple shifting sufficed to calculate
ηm−12

λ′−λ′′

in the binary case. The aforementioned expansion
bounds (anywhere we have factors of two) also need adjust-
ment for nonbinary cases. These alternations do not worsen
computational complexity.

IV. EXTENSIONS

The aforementioned method yields a prefix code minimizing
expected length for a known finite probability mass function
under the given constraints. However, there are many varied
instances in which expected length is not the proper value to
minimize [4]. Many such problems are in a certain family
of generalizations of the Huffman problem introduced by
Campbell in [15].

While Huffman coding minimizes
∑

i∈X pili, Campbell’s
quasiarithmetic formulation adds a continuous (strictly)mono-
tonic increasingcost function ϕ(l) : R+ → R+. The value to
minimize is then

L(p, l, ϕ) , ϕ−1

(
∑

i∈X

piϕ(li)

)

.

Convexϕ have been solved for [10]. For nonconvex func-
tions, it suffices to calculate the partial costL[m, υ, η] from
one level to another asL← L[i−1, υ, η]+(ϕ(λ′)−ϕ(λ′′))(1−
sυ) instead of L ← L[i − 1, υ, η] + (λ′ − λ′′)(1 − sυ).
The exchange argument still holds, resulting in a monotonic

solution, and Λ still has cardinality less thann, so the
algorithm proceeds similarly for identical reasons, and thus
with the same complexity. A nonbinary coding extension is
similar to that used to minimize expected length.

Before discussing another extension, we should note that
the aforementioned algorithm is needlessly slow for small|Λ|.
For example, if|Λ| = 2 then, due to monotonicity and the
Kraft inequality, the solution is independent of the probability
distribution, and there should be⌊(2λ2 − n)/(2λ2−λ1 − 1)⌋
codewords of lengthλ1, with the rest having lengthλ2. For
larger values, the problem is a convex optimization problem
with a simple linear constraints, as noted in the introduction.
If |Λ| = 3, one can do binary search over the differences of
consecutive feasible values ofλ1, finding the minimum over
feasible lengths. Givenλ1, the other values are directly calcu-
lated. This solves the problem inO(log n) time and constant
space given{si}, a properly sorted cumulative distribution
function corresponding to the sorted probability mass function.
For larger values of|Λ|, standard convex optimization tech-
niques [16] find a numerical solution not restricted to integers,
i.e., one that might correspond to2.4 codewords of lengthλ1.
Finding the optimal integer solution given the aforementioned
numerical solution grows exponentially difficult due to the
curse of dimensionality, and thus the dynamic programming
approach is best for all but the smallest|Λ|.

As previously stated, one purpose for reserving lengths is to
allow faster decoding by having fewer codewords. However,
if this is the objective, the problem remains of how to select
the codeword lengths to use. We might, for example, restrict

our solution to having two codeword lengths, but not put any
restrictions on what these codeword lengths should be. Sucha
problem was examined analytically in [17] forn approaching
infinity. Here, we consider solving the problem for fixedn.

One approach to the two-length problem would be to try all
feasible combinations of codeword lengths. We then have to
find a feasible set, hopefully one relatively small so as not to
drastically increase the complexity of the problem.

First note that, if only one codeword length is used, then
λ2 = λ1 = ⌈log2n⌉. Otherwise, we begin by observing that,
for the best tree, the number of internal nodes and leaves on
the first allowed levelλ1 must each be greater than0 (or else
only one codeword length could be used) and combined be
no greater thann − 1 (or else a better code exists with all
codewords having one length). Thusλ1 ≤ log2(n−1), or, put
another way,λ1 ≤ ⌈log2n⌉− 1. At the same time, the second
allowed level cannot have2n− 2 or more combined internal
nodes and leaves; otherwise an improved tree can be found by
decreasingλ2 by one, since no more thann−1 leaves can be
on this level. Because these nodes are all descendants of all
least one internal node on the first allowed level, this results
in 2λ2−λ1 < 2n − 2, which leads toλ2 − λ1 ≤ ⌈log2(n −
1)⌉ ≤ ⌈log2n⌉. Combining these results, we find thatλ2 ≤
2⌈log2n⌉ − 1.

This result, while not the strictest bound possible, is suffi-
cient for us to determine that the number of codeword length
combinations one would have to try would beO(log2 n). Thus,
since|Λ| = 2 in all cases (running in constant time per case)
and only constant-space data need be kept between combina-
tions, the algorithm has only aO(log2 n) time requirement
and aO(1) space requirement given{si}. For example, the
optimal two-length code for the Benford distribution has two
codewords of length two and seven codewords of length four.
This also happens to be the code found above to be optimal for
lengths restricted to powers of two, and has average codeword
length 3.04 . . ., very near to that of the optimal unrestricted
Huffman code, which has average codeword length2.92

The two-length problem’s solution can be easily generalized
to that of a g-length problem. Forg = |Λ| = 3, we can
use the aforementionedO(log n) binary search method for
each feasible value, thus solving the problem inO(log4 n)
time. For an already-known pre-sorted cumulative distribution
function, then, one can actually solve these problems more
quickly than finding the optimal Huffman code. However, as
g increases, the curse of dimensionality affects not only the
convex optimization approach, but any approach that examines
all feasible combinations of allowed codeword lengths. Ifλm

is upper bounded by (approximately)mlog2n, then we can
only say that there are no more thang!log2

gn combinations,
which is not workable except for the smallest values ofg.

For large enough values ofn, approximation algorithms may
be called for, due to the increased granularity of the possible
integer solutions. Let us briefly sketch one approach: Since
codeword lengths should be around clusters of probabilities,
if any, we can use Lloyd’s algorithm [18] to cluster the
probabilities (using “ideal lengths”(− log pi), weighted by

pi, as the values in question). We can stop the algorithm
in an early iteration or even skip it entirely, instead using
equiprobable partitions. We can optimizeΛ given the partition
we choose. Solving yieldsλk = log2(ωk/qk), where qk ,

sΩk
− sΩk−1

, the sum probability of partitionk. Rounding to
integer values for the lengths, we can find a corresponding op-
timal or approximated code. Details of such an approximation
technique are beyond the scope of this discussion, althoughit
bears noting that the expected “length” for this real-valued Λ
is
∑

qk(log2ωk − log2qk), or the sum of the entropy of the
partition (the bits needed to code which part of the partition
the element is in) and the expected value of the logarithm of
the part size (the bits needed to determine, via a fixed-length
code on the part, which element of the part is in question).

Nevertheless, for smallg andn the dynamic programming
approach suffices, and allg′-length problems, forg′ ≤ g,
can be solved with similar complexity, allowing for a selec-
tion of the desired trade-off between number of codeword
lengths (speed) and expected codeword length (compression
efficiency). Modifications can enact additional restrictions on
codeword lengths (e.g., a limit on maximum length) in a
straightforward fashion.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[2] B. McMillan, “Two inequalities implied by unique decipherability,” IRE
Trans. Inf. Theory, vol. IT-2, no. 4, pp. 115–116, Dec. 1956.

[3] T. Cover and J. Thomas,Elements of Information Theory, 2nd ed. New
York, NY: Wiley-Interscience, 2006.

[4] J. Abrahams, “Code and parse trees for lossless source encoding,”
Communications in Information and Systems, vol. 1, no. 2, pp. 113–
146, Apr. 2001.

[5] A. Moffat and A. Turpin, “On the implementation of minimum redun-
dancy prefix codes,”IEEE Trans. Commun., vol. 45, no. 10, pp. 1200–
1207, Oct. 1997.

[6] I. H. Witten, A. Moffat, and T. Bell,Managing Gigabytes, 2nd ed. San
Francisco, CA: Morgan Kaufmann Publishers, 1999.

[7] Z. Zhang, Private communication, Feb. 2005.
[8] G. K. Zipf, “Relative frequency as a determinant of phonetic change,”

Harvard Studies in Classical Philology, vol. 40, pp. 1–95, 1929.
[9] L. L. Campbell, “Block coding and Rényi’s entropy,”Int. J. Math. Stat.

Sci., vol. 6, no. 1, pp. 41–47, June 1997.
[10] M. B. Baer, “Source coding for quasiarithmetic penalties,” IEEE Trans.

Inf. Theory, vol. IT-52, no. 10, pp. 4380–4393, Oct. 2006.
[11] ——, “D-ary bounded-length Huffman coding,” inProc., 2007 IEEE

Int. Symp. on Information Theory, June 24–29, 2007, pp. 896–900.
[12] S.-L. Chan and M. J. Golin, “A dynamic programming algorithm for

constructing optimal “1”-ended binary prefix-free codes,”IEEE Trans.
Inf. Theory, vol. IT-46, no. 4, pp. 1637–1644, July 2000.

[13] M. J. Golin and G. Rote, “A dynamic programming algorithm for
constructing optimal prefix-free codes for unequal letter costs,” IEEE
Trans. Inf. Theory, vol. IT-44, no. 5, pp. 1770–1781, Sept. 1998.

[14] F. Benford, “The law of anomalous numbers,”Proc. Amer. Phil. Soc.,
vol. 78, no. 4, pp. 551–572, Mar. 1938.

[15] L. L. Campbell, “Definition of entropy by means of a coding problem,”
Z. Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 6, pp. 113–
118, 1966.

[16] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge,
UK: Cambridge Univ. Press, 2003, available at http://www.stanford.edu/
∼boyd/cvxbook.html.

[17] E. Figueroa and C. Houdré, “On the asymptotic redundancy of lossless
block coding with two codeword lengths,”IEEE Trans. Inf. Theory, vol.
IT-51, no. 2, pp. 688–692, Feb. 2005.

[18] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression.
Boston, MA: Kluwer Academic Publishers, 1992.

