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Abstract— In prefix coding over an infinite alphabet, methods 3.51, and other papers, such as [15], find Internet phenomena

that consider specific distributions generally consider tlose that conforming toa as low asl.2. We therefore analyze some

decline more quickly than a power law (e.g., a geometric ; ;
distribution for Golomb coding). Particular power-law dis tri- codes lying outsider € [2, 3] as well.

butions, however, model many random variables encountered
in practice. Estimates of expected number of bits per input
symbol approximate compression performance of such random  The most common infinite-alphabet codes are codes that
variables and can thus be used in comparing such methods. are optimal for geometric [16], [17] and geometrically bdise
This paper introduces a family of prefix codes with an eye 118} 22] distributions. For geometric distributionsgete are

towards near-optimal coding of known distributions, precisely
estimating compression performance for well-known probaldity known as Golomb codes, and are based onuhary code

II. BACKGROUND, FORMALIZATION, AND MOTIVATION

distributions using these new codes and using previously kwn — Ones terminated by a zero, i.e., a code consisting of
prefix codes. One application of these near-optimal codes mn codewords the form{170} for j > 0. In a Golomb code
improved representation of rational numbers. (Gk), a unary code prefix precedes a binary code suffix. This

binary suffix is acomplete binary codein that it has k)

codewords of the same length or length differing by at most

Consider discrete power-law distributions, those of thenfo gne (the first2l'e#1 — & items having lengthlg k| and the

a (1) last 2k — 2/'8*1 items having lengtljlg k]). For example, the

order-preserving complete binary code of size three wtsch i

for constants: > 0 and« > 1, wherep(i) is the probability monotonically nonincreasing in length {9, 10,11}, so the

of symboli, and f(i) ~ ¢(i) implies that the ratio of the Golomb code @G is {00,010,011, 100, 1010,...} (complete

two functions goes td with increasing:. Such distributions suffix in boldface). Codes that exhibit an efficient codingera

could be either inherently discrete or discretized versioh for infinite-support power laws, by contrast, are not knowan t

continuous power-law distributions. be optimal (excepting trivial examples for dyadic probiypil
Several researchers in varied fields have, in classic paperass functions).

ranging from decades to centuries old, observed power-lamWe restrict ourselves to binary codes and assume without

behavior for various discrete phenomena, from continuéass of generality that the infinite-alphabet source enyita-s

fractions [1], [2] to Internet connections [3], [4]. Severecent bols drawn from the alphabét = {1,2,3,...}. Symboli has

expositions survey this [3], [5], [6]. probability p(i) > 0, forming probability mass functio® =
Exponential-Golomb codes [7] (generalizations of Elias’ {p(i)}. The source symbols are coded into binary codewords.

code [8]) are a good fit for certain power laws [9], leading tdhe codeworde(i) € {0,1}*, corresponding to symbai,

their widespread use in compressing video and numerical dagas lengthn(i) € Z,, thus defining length distributiolV =

[9], [10]. However, there are few specific infinite-cardibal {n(i)}. An optimal code minimize$ _,_ , p(i)n(i) with the

power-law distributions that have been used to judge comenstraint of being uniquely decodable; thus we consider tw

pression performance of prefix codes. Only the Gauss-Kuzntodes with identical lengths equivalen¥ corresponds to

distribution is considered in [11], [12], while the more eat at least one such code if and only if the Kraft inequality,

[4] analyzes zeta distributions for whieche (1,2] in (1). Yicx 2-7() < 1, is satisfied. We assume without loss of
Here we propose simple codes which not only improvgenerality that these codes are prefix codes, that is, codes

upon existing codes for encoding symbols distributed atcomwhere there are no two codewords of the forfi) and

ing to the Gauss-Kuzmin distribution — which applies t@(j) = c(i)x, wherec(i)z denotes the concatenation of strings

representing rational numbers using continued fractions e&) and (nontrivial)z. (In a similar use of notatiom)* and

but also efficiently code other common distributions, such® denotek 0's andk 1's, respectively. Alsolg denotedog,

as the zeta distribution with parameteér[13], [14]. We andIn denotedog,, the natural logarithm.)

precisely estimate compression performance for dozens ofOne cannot use the Huffman source coding algorithm [23]

code/distribution combinations, concentrating on povesvsl to find an optimal code, as one can for a finite source alphabet.

of the form (1) witha € [2, 3], which, [5] notes, most power- However, it is sensible that a code over the integers should

law distributions occurring in nature satisfy. Howevet,ifSelf be monotonic that is, thatn(i) < n(i + 1) for all ¢ > 0.

includes phenomena with as low as1.8 and as high as An exchange argument easily shows that this is necessary for

I. INTRODUCTION
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the code to be optimal given a distribution for whigti) > thus straightforward to encode, decode, and write in thefor
p(i+ 1) for all . of an implicit infinite coding tree.
Another desirable property is one we call “smoothness”.  This code, like exponential-Golomb codes, is a modification
Definition: We call N = {n(i)} j-smoothf, for everyi > j, of they code. Whereas the code has amn-bit unary code
if n(i+1) = n(i +2), thenn(i + 1) — n(i) < 1, that is, followed by a complete binary code faf"~* items, Coded
the sequence of codeword lengths has no “gaps” (whéig follows the unary prefix by a complete binary suffix far
andn(i + 1) differ by more thanl) followed by “plateaus” 2™~! items. This assures not only its monotonicity, but also
(with multiple codewords —n(i + 1) andn(i + 2) — at the its 0-smoothness, due to the complete binary suffix being of
same length)weakly smoothmeans that it isj-smooth for variable length. This and its similarity to the code, which
somej. Thus, for anyj, a j-smooth code includes all weaklyis not smooth, means that the code is especially suitable for
smooth codes. Similarly)-smooth (orstrongly smoothcodes power laws.
include all j-smooth (and thus weakly smooth) codes. Also, Straightforward extensions of this can be obtained by mod-
we call aP = {p(i)} j-antiunaryif, for everyi > j, p(i) < ifying the coding tree. We can add fabit binary number
p(i+1) + p(i + 2); antiunarymeans that it ig-antiunary for to each possible codeword — as in the fourth and fifth set
somej. of columns in Table | — extending Codé by adding a
Observation:No j-antiunary distribution has an optimalfixed-length suffix in the same manner as exponential-Golomb
code which is notj-smooth. Thus no antiunary distributioncodes, that is,
has an optimal code which is not weakly smooth. , i—1 _ .
Proof: Suppose aj-antiunary distributionP has an (i) = co (1 + {WD b((i — 1) mod 2%, 2%)
optimal code with lengthsV which is not j-smooth. Then ) )
there exists an > j such thatn(i + 1) = n(i + 2) and Wherek > 0 andb ((i — 1) mod 2*,2) is the k-bit repre-
n(i + 1) — n(i) > 1. ConsiderN’ = {n/(i)} for which Sentation of(i — 1) mod 2*. Call any of the new extensions
n'(k) = n(k) except at values/(i) = n(i) + 1, n/(i + 1) = Codek. _ o _ _
n(i+1)—1, andn’(i+2) = n(i+2) — 1. Clearly N’ satisfies A_nothe_r extension, similar to [9] _and_ [_25_>]_, mvolves_flrst
the Kraft inequality and”, p(i)n’ (i) < 32, p(i)n(i), SON is coding with a finite code tree, then, if this initial codewasd
not optimal. m all1's, adding Cod®. If we start as in a unary code and switch
Every power law is antiunary, but most previously proposd@ C0de0 after » ones, then let Code» denote the implied
codes suitable for power-law distributions are not weakfPde, e.g., Code-1, the second set of columns ((-) and
smooth, so they could not be optimal solutions, and it f-1(*)) in Table I. Formally, fork = —x <0,
always a simple matter to improve such codes for use with , 110, i< —k
such distributions. This gives us reason to believe thagram ek (i) = { 1Peoli + k), i > k.

suboptimal codes, (weakly and/or strongly) smooth codes
might be better suited to these distributions than thosé thaAll codes presented here abesmooth, and can be coded

are not smooth, something that is empirically confirmed @nd decoded using only additions, subtractions, and shifts
the remainder of this paper such that the total number of operations is proportional to

We discuss suboptimal codes because, although optirﬂé%n:mber of en_cod?]d OUth)Ut bits. fth q
codes always exist [24], there is no guarantee that optimal efore comparing the performance of these codes to extant

codes would be computationally tractable, let alone com-puf:Odes’ we shoul? f'rit bf sure W? arg making a fa!r colmpar-
tionally practical for compression applications. We thudge !son.dForde?lamp e, the Irlegatlye code’s <<'OI) ngonsy d
performance of candidate codes by expected number of giiiyoduced have an analogue in exponential-Golomb codes,

per coded symbol rather than by strict optimality. One of th%nd' indeed, at least one of these codes is used in the

contributions of this paper is a comparison of various c:odggz64 video cpmpressmn.standard [91' Therefore, for the
for well-known power-law distributions. sake of comparison, we define exponential-Golomb codes with

parametet: < 0 to be defined as above; that is,
1i-10, i< —k

CEGk(i) = { —k . .
We propose a family of monotonic, computational efficient, 1M eeeo(i + k), 0> —k.
0-smooth codes, starting with the code shown in the center set IV. APPLICATION
of columns {o(-) andcy(-)) of Table I, which is defined as

IIl. A NEW FAMILY OF CODES FOR INTEGERS

Table Il lists various distributions for which no optimaldm®

0b(i —1,3), i<4 is known and estimates, in expected number of bits per input
coli) =4 leo (d’) 0’ i=1{4,6,8,...} symbol, of coding performance using several different sode
238 e Values in the table are shown to the calculated precisiod, an
160(2)1, i={5,7,9,...}.

values that are exactly calculated from infinite sums, mathe
The termb(j, k) denotes thé; + 1)th codeword of a complete than estimated, are indicated by the reduced number of 8gure
binary code witht items, e.g.p(-,3) = {0,10,11}. Thus, for (for integers) or through ellipses fér/3, ¢(1.5)/¢(2.5), and

example,co(12) = 1¢o(5)0 = 11¢p(1)10 = 110010. This is  ¢(2)/¢(3). The entropy and the expected number of bits per



Code —2 Code—1 Code0 Codel Code?2

i | n_2(i) c—2(3) n_1(i) c—1(i) no(i)  co(?) ni(i) c1(?) na(i)  c2(1)

1 1 0 1 2 00 3 000 4 0000

2 2 10 3 100 3 010 3 001 4 0001

3 4 11 00 4 1010 3 011 4 0100 4 0010
4 5 11010 4 1011 4 1000 4 0101 4 0011
5 5 11011 5 11000 4 1001 4 0110 5 01000
6 6 11 1000 5 11001 5 101 00 4 0111 5 01001
7 6 11 1001 6 110100 5 10101 5 10000 5 01010
8 7 11 101 00 6 110101 5 10110 5 10001 5 01011
9 7 11 101 01 6 110110 5 10111 5 10010 5 01100

TABLE |
FIvE OF THE CODES INTRODUCED HERE
H N* (estimate) Golin Codek I EGK/(15]w Y Gk

Gauss-Kuzming = 2 3.43253 | 3.47207 3.50705(1:2) | 3.472346(-1 | 3.77915  3.50705(7) 3.48765  oo(VF)

6~ p=1 2.95215 | 2.98136 3.(1.2) 2.983338(-D | 3.17826 3.0 2.98138 oco(VF)

-(% Top=15 2.17073 | 2.21571 2.225070) | 2.230792(-2) | 232233 2.23222(-1) 226031  2.85003(3)

b p=2 1.74685 | 1.83787 1.84024M | 1.848484(-% | 1.91747  1.84788(~1) 1.92361  2.(D

3 p=25 1.47629 | 1.62102 1.62191M | 1.626668(-5) | 1.68947 1.63115(—2) 1.73044  2.66666 . ..(1)
s=16 3.93017 | 3.95 4.0427(D 3.995727-1) | 4.32479  4.06504(0) 4.05307 ooV

g  s=175 3.17604 | 3.1938 3.23311) 3.199677(~1) | 3.42048  3.23385(%) 3.21909  oco(VF)

4 ! s5=2 2.36259 | 2.41766 2.43310(1) 2.417772(=2) | 2.53468  2.43310(-1 243042  oo(VR)
s=25 1.46525 | 1.65431 1.65767M | 1.658015(-%) | 1.70907 1.65943(—2) 1.71963  1.94737...(1
s=3 0.97887 | 1.33453 1.33504) | 1.336680(—4) 1.36956  1.33656(—3)  1.41389  1.36843...(1

entropy estimated / ad hoc codes new codes previously knodesc

TABLE I
COMPRESSION(IN BITS PER SYMBOL) AND CODE PARAMETER(WHERE APPLICABLE)

symbol of an (unknown) optimal code are also estimated, theere designed for (in (1)) in the [1.06,1.57] range, where
latter based on suboptimal codes. The Appendix explains tiggver practical distributions arise. On a related note,levhi
methods by which the estimates are calculatdddenotes the ¢ code (; is superior toy (EG0) for zeta codes with
the entropy of the distributionH(P) = — >, p(i)lgp(i)) s=a € [1.27,1.57], Code—1 is best fors = 1.53 (not shown
and N* (the expected codeword length of) the optimal cod@ the above table). For this distribution, Codd averages
Golin denotes the best Golin code [26]; Codedenotes 4.537 bits per symbol input whilel, averagesi.539 bits.
the best of the codes introduced henedenotes the Leven- Similar results occur for slightly highet; the table includes
shtein (Iesenmretin) code [27]; EGe/(/6/w denotes the best examples of highes values.
of the exponential-Golomb codes [7], the extensions to theCode —1 is of particular interest as it happens to be an
exponential-Golomb codes in the previous section, thesEliexcellent code for the Gauss-Kuzmin distribution, defirat(
codes [8], and the codes [4], where codes in the exponentialwell-approximated) as follows:
Golomb family are indicated by the code number (e.g.0EG 1 loe
Elias’ v code, by0); Y denotes Yokoo’s code for the Gauss- p*(i) & —1g [1 — — 2] R — ] 5
Kuzmin distribution [12]; and & denotes the best Golomb (i+1) (i+1)
code (with parametek) [16]. These codes are defined in th&he Gauss-Kuzmin distribution is the one for which to code
cited papers. In cases for which there are multiple codemandvhen expressing coefficients of continued fractions, agj, [
parameters, the best one is chosen and indicated in suipérscj28], in which EQ) is proposed for use, and [12], in which

In Table Il, the best code among previously known codeé®dkoo’s code is proposed. Codel is only about0.008%
and the new codes is in bold, and, if a Golin code iworse than the (approximated) optimal code, whereas Yskoo’
better, this is in italics. Note that Golin codes do well focode is0.449% worse and the Elias code (E®) is 1.007%
inputs with rapidly declining probabilities, whereas Yok® worse. Each of these codes provides a method for expressing
code and the codes introduced here have the best restdtional numbers without round-off as their continued fiat
for heavier tails. (Like the codes here, Yokoo’s code can Ibepresentation; see [11], [12] for details, which are ositt
viewed as a “smoothed” version of the exponential-Golonttere for space. This representation afphabetic or order
codes.) However, Golin codes, in being calculated on the flyteservingif the code is; a code is order preserving:(t, ;)
are often impractical, both due to the potential for rougdinis the jth bit of theith codeword, there(i + 1, j) < (3, j)
errors to lead to coding errors and due to the computatiorally if there is ak < j such thate(i + 1, k) # c(i, k). The
complexity of the required floating point divisions. Notes@l codes presented here are order preserving due to the unary
that( codes are never superior for these distributions, as thesefix and complete binary suffix being monotonic and order




preserving in Codd); the order preservation of other code$4]), whereas others have significantly higher computation
follows. Code—1 thus provides an improved representationomplexity (e.g., Fibonacci [34], [35]). In comparison to

over prior codes. other feasible codes, the codes introduced here are a aotabl
Note also that Code-2 is a good code for the zetaimprovement. While not optimal, they can be quite useful in
distribution with parametes = o = 2, where the zeta practical applications.
distribution is defined as APPENDIX
pS(i) & — ! Codeword lengths for infinite codes are estimated in rela-
*¢(s) tively simple fashion, as more complex methods are unnec-

and( is the Riemann zeta functiof(s) £ °° i~ for s > €ssary. Golin codes are each estimated based on the partial
1=

1. The zeta distribution is used to model several phenomefffl€ and conditional entropy of the remaining items; we omit
including language [29] and Internet phenomena [15]. O@mmdetalls for space. For other codes, some expected Ieng;hs ar
codes for the zeta distribution ¢ = 2) were considered €xactly known. The unary (G code is a mean value, which

in Kato's unpublished manuscript [14], in which the optimal® known in the case of zeta and Yule-Simon distributions,
codeword lengths for the first ten symbols are shown to I#éhile the average length of the Eliascode (E®) code for

in ranges of two possible values for each codeword (or ongle-Simon withp = 1 is easily calculated as

for the first, which has:(1) = 1). The codeword lengths of > 0 ; i ‘

Code—2 all lie within thEe Lllowed ranges. However, we can Zp(i)”(i) =1+ 22 z‘(Lz'linl) =1+ 221'2_]_1 =3
empirically find better codes, showing that Code, although =1 i=1 J=0

the best simply described code we know of, is abd005% Golin’s algorithms both result in the same code for this dis-

worse than an optimal code. tribution, since the algorithms’ conditions result in gpings
A third distribution family is that of Yule [30] and Simon of probabilities summing to powers of two.
[31], Optimal expected codeword lengths are estimated using an
(i —1)lp! optimal code for a truncated distribution and the entropy of
pyS(i) £ pB(i, p+ 1) (pzs(i) = p(pTz)ﬁ')) the remaining items; although not having the same guardntee

accuracy, the results seem to provide accurate estimases ba
where B(i, j) is the beta functionp = o — 1 > 0, and upon the behavior of coding truncated probability distfids
the right equation applies for integgr Thus, for example, if of increasing size. In [24], it is shown that sequences ohsuc
p=1,thenp(i) = 1/i(i + 1). Several statistics, from speciedruncated distributions always have a subsequence cdngerg
population to word frequencies, have been observed to oldeythe optimal code, providing theoretical justificationr fo
a Yule-Simon distribution, most often with parameger= 1  the use of this technique, which also causes distributions f
[31]. This particular distribution is also related to conted especially heavy tails, e.g., zeta distributions with 2, to
fractions, being the distribution of the first coefficient af be estimated with lower precision.
continued fraction of a number chosen uniformly over the uni For most code/probability combinations considered here,
interval (0, 1). For P)S, Yokoo’s code is0.066% better than we have that they are monotonic and we can fing, » >
Code—1, and a merd.0007% worse than an optimal code. 0,,& > 0,7 > 0,0 > 0,¢ > 0 such that

As in many previous papers on these and similar codes [7], . . .
[32], the best code is chosen by its empirical performanse; a n(@) € rn@i+p+ 1)+ vin(i+ ) + 4]
with exponential-Golomb codes, there appears to be no simpind monotonic
accurate, analytically derived rule for deciding which edd . o) ¢
use. p(i) € [W a—+]

_We fino! that the codes int_roduced here do quit.e well, onky, large enoughi > imin. Then, forz > i, We have
failing to improve upon previously known codes in one case __ -
with a € [2,3) — « as in (1) — the Yule-Simon distribution N / Ny
with parameterp = 1 (p(i) = 1/i(i + 1)). Because Yokoo’s Zx (nfe) 2 z p(ijn(i — 1)di
code, the best code for_this instance_, requires computing ® réIn(i + p) + ag .
codewords for complete binary codes with unequal codeword / (i Ry di

lengths, Code—1 introduced here might still be preferable T In(i

in this instance, requiring less computation to encode and > ¢/ T n(2+'€,)+7fmi“(x) T
decode. For all tested distributions, Yokoo’s code and tiues @ (i + r)sH!

introduced here are both strict improvements on exporentia _ 7oln(z +min(k, ) + 766" + ag
Golomb and Elias codes, confirming that, in practizemooth (x4 k)¢

codes are very often preferable to those lacking this ptypeRyhere f,,;,,(z) = min(In(z+ ) — In(z + ), 0), and, similary,

Note that not all known codes for integers were tested here; .
certain codes can be ruled out due to the length of the firstzp(i)n(i) < voIn(r + max(—1,p)) + vo¢ " + B9
few codewords (e.g., Even-Rodeh [33], Zeta codes Wwith 2 N {(x — 1)

i=x



providing upper and lower bounds to average codeword lengthy
using codeN = {n(i)} for probability distributionP =

{p(i)}. Other distributions (such as Golomb codes) and Shagy
non entropy can be bounded similarly. Such an approach
enables us to find estimates with accuracies limited only ?f’z]
the precision of the partial summations (i.e., round-ofbgx
For the probability distributions currently under consat@n,

we have: (23]

| & ¢ K [14]
Py |1 1 Ige
15
PS1p p pL(p+1) 1ol
PS10 s—1 (s)

16
For v [8], Yokoo [12], Levenshtein Jlesermreiin) [27], (el

and ¢, [4] codes, and for the Codes and extensions of th¥]
exponential-Golomb introduced here, 5, 4,7 > 0,v > 0
can be

[18]
Q@ 1) 1 T v
v, Yokoo | —1 1 0 2lge 2lge [19]
a2 2 -1 Ige 2.51ge
(i>1)
GO 2 0 15lge 15lge  [20
EGL | -1—-k 1-k k 2lge 2lge
E28 ey
Codek | ap—k —-1—-k 2+4+k 2lge 2lge
(k< 0)
(i > —k) [22]

whereay = 1 — 21g3. (Parameters for other codes can be
similarly formulated, but these are unused here due to thgig
inferiority at the distributions in question.)

For finding the best code within code families with multiplé24]
codes — such as Code, EGk, and G: (Golomb codek,
defined in the main text) — partial sums can be used to linjits]
the number of codes tested to a finite number. For examp[lzee,]
these codes have(l) — oo ask — +oo, SO at some point
p(1)n(1) will be too large to consider Codewith parameters [27]
k > kmax fOr someky,.«. Similarly, ask — —oo, the unary
portion of the code can be used for the partial sum.
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