
IEEE TRANSACTIONS ON INFORMATION THEORY 1

Source Coding for Quasiarithmetic Penalties
Michael B. Baer,Member, IEEE

Abstract— Whereas Huffman coding finds a prefix code min-
imizing mean codeword length for a given finite-item proba-
bility distribution, quasiarithmetic or quasilinear coding prob-
lems have the goal of minimizing a generalized mean of the
form ϕ−1(

P
i piϕ(li)), where li denotes the length of theith

codeword, pi denotes the corresponding probability, andϕ is a
monotonically increasing cost function. Such problems, proposed
by Campbell, have a number of diverse applications. Several cost
functions are shown here to yield quasiarithmetic problems with
simple redundancy bounds in terms of a generalized entropy.
A related property, also shown here, involves the existence of
optimal codes: For “well-behaved” cost functions, optimal codes
always exist for (possibly infinite-alphabet) sources having finite
generalized entropy. An algorithm is introduced for finding
binary codes optimal for convex cost functions. This algorithm,
which can be extended to other minimization utilities, can be
performed using quadratic time and linear space. This reduces
the computational complexity of a problem involving minimum
delay in a queue, allows combinations of previously considered
problems to be optimized, and greatly expands the set of problems
solvable in quadratic time and linear space.

Index Terms— Huffman codes, generalized entropies, general-
ized means, optimal prefix code, quasiarithmetic means, queue-
ing.

I. INTRODUCTION

I T is well known that Huffman coding [1] yields a prefix
code minimizing expected length for a known finite prob-

ability mass function. Less well known are the many variants
of this algorithm that have been proposed for related prob-
lems [2]. For example, in his doctoral dissertation, Humblet
discussed two problems in queueing that have nonlinear terms
to minimize [3]. These problems, and many others, can be
reduced to a certain family of generalizations of the Huffman
problem introduced by Campbell in [4].

In all such source coding problems, a source emits symbols
drawn from the alphabetX = {1, 2, . . . , n}, wheren is an
integer (or possibly infinity). Symboli has probabilitypi, thus
defining probability mass functionp. We assume without loss
of generality thatpi > 0 for every i ∈ X , and thatpi ≤ pj

for every i > j (i, j ∈ X). The source symbols are coded
into codewords composed of symbols of theD-ary alphabet
{0, 1, . . . , D− 1}, most often the binary alphabet,{0, 1}. The
codewordci corresponding to symboli has lengthli, thus

This work was supported in part by the National Science Foundation (NSF)
under GrantCCR-9973134 and the Multidisciplinary University Research
Initiative (MURI) under Grant DAAD-19-99-1-0215. Material in this paper
was presented at the 2003 International Symposium on Information Theory,
Yokohama, Japan.

M. Baer was with the Department of ElectricalEngineering, Stanford
University, Stanford, CA 94305-9505 USA. He is now with Electronics
for Imaging, 303 Velocity Way, Foster City, CA94404 USA (e-mail:
Michael.Baer@efi.com).

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer beaccessible.

defining length distributionl. Finding values forl is sufficient
to find a corresponding code.

Huffman coding minimizes
∑

i∈X pili. Campbell’s formu-
lation adds a continuous (strictly) monotonic increasingcost
functionϕ(l) : R+ → R+. The value to minimize is then

L(p, l, ϕ) , ϕ−1

(∑
i∈X

piϕ(li)

)
. (1)

Campbell called (1) the “mean length for the cost function
ϕ”; for brevity, we refer to it, or any value to minimize, as
thepenalty. Penalties of the form (1) are calledquasiarithmetic
or quasilinear; we use the former term in order to avoid
confusion with the more common use of the latter term in
convex optimization theory.

Note that such problems can be mathematically described
if we make the natural coding constraints explicit: the integer
constraint,li ∈ Z+, and the Kraft (McMillan) inequality [5],

κ(l) ,
∑
i∈X

D−li ≤ 1.

Given these constraints, examples ofϕ in (1) include a
quadratic cost function useful in minimizing delay due to
queueing and transmission,

ϕ(x) = αx+ βx2 (2)

for nonnegativeα andβ [6], and an exponential cost function
useful in minimizing probability of buffer overflow,ϕ(x) =
Dtx for positive t [3], [7]. These and other examples are
reviewed in the next section.

Campbell noted certain properties for convexϕ, such as
those examples above, and others for concaveϕ. Strictly
concaveϕ penalize shorter codewords more harshly than the
linear function and penalize longer codewords less harshly.
Conversely, strictly convexϕ penalize longer codewords more
harshly than the linear function and penalize shorter codewords
less harshly. Convexϕ need not yield penalty functions convex
in l, althoughϕ(L(p, l, ϕ)) is clearly convex inl if and only if
ϕ(l) is. Note that one can map decreasingϕ to a corresponding
increasing functionϕ̃(l) = ϕmax − ϕ(l) without changing
the value ofL(p, l, ϕ) (e.g., for ϕmax = ϕ(0)). Thus the
restriction to increasingϕ can be trivially relaxed.

We can generalizeL by using a two-argument cost function
f(l, p) instead ofϕ(l), as in (3), and adding{∞} to its range.
We usually choose functions with the following property:

Definition 1: A cost function f(l, p) and its associated
penalty L̃ are differentially monotonicif, for every l > 1,
wheneverf(l − 1, pi) is finite andpi > pj , f(l, pi) − f(l −
1, pi) > f(l, pj)− f(l− 1, pj).
This property means that the contribution to the penalty of
an lth bit in a codeword will be greater if the corresponding

IEEE TRANSACTIONS ON INFORMATION THEORY 2

event is more likely. Clearly anyf(l, p) = pϕ(l) will be
differentially monotonic. This restriction on the generalization
will aid in finding algorithms for coding such cost functions,
which we denote asgeneralized quasiarithmeticpenalties:

Definition 2: Let f(l, p) : R+ × [0, 1] → R+ ∪ {∞} be a
function nondecreasing inl. Then

L̃(p, l, f) ,
∑
i∈X

f(li, pi) (3)

is called ageneralized quasiarithmeticpenalty. Further, iff is
convex in l, it is called ageneralized quasiarithmetic convex
penalty.
As indicated, quasiarithmetic penalties — mapped withϕ
usingf(li, pi) = piϕ(li) to L̃(p, l, f) = ϕ(L(p, l, ϕ)) — are
differentially monotonic, and thus can be considered a special
case of differentially monotonic generalized quasiarithmetic
penalties.

In this paper, we seek properties of and algorithms for
solving problems of this form, occasionally with some re-
strictions (e.g., to convexity ofϕ). In the next section, we
provide examples of the problem in question. In Section III, we
investigate Campbell’s quasiarithmetic penalties, expanding
beyond Campbell’s properties for a certain class ofϕ that
we call subtranslatory. This will extend properties — entropy
bounds, existence of optimal codes — previously known only
for linearϕ and, in the case of entropy bounds, forϕ of the
exponential formϕ(x) = Dtx. These properties pertain both
to finite and infinite input alphabets, and some are applicable
beyond subtranslatory penalties. We then turn to algorithms
for finding an optimal code for finite alphabets in Section IV;
we start by presenting and extending an alternative to code
tree notation, nodeset notation, originally introduced in [6].
Along with the Coin Collector’s problem, this notation can
aid in solving coding problems with generalized quasiarith-
metic convex penalties. We explain, prove, and refine the
resulting algorithm, which isO(n2) time andO(n) space
when minimizing for a differentially monotonic generalized
quasiarithmetic penalty; the algorithm can be extended to other
penalties with a like or slightly greater complexity. This is an
improvement, for example, on a result of Larmore, who in
[6] presented anO(n3)-time O(n3)-space algorithm for cost
function (2) in order to optimize a more complicated penalty
related to communications delay. Our result thus improves
overall performance for the quadratic problem and offers an
efficient solution for the more general convex quasiarithmetic
problem. Conclusions are presented in Section V.

II. EXAMPLES

The additive convex coding problem considered here is quite
broad. Examples include

f(li, pi) = pil
a
i (ϕ(x) = xa)

for a ≥ 1, the moment penalty; see, e.g., [8, pp. 121–
122]. Although efficient solutions have been given fora = 1
(the Huffman case) anda = 2 (the quadratic moment),
no polynomial-time algorithms have been proposed for the
general case.

The quadratic moment was considered by Larmore in [6] as
a special case of the quadratic problem (2), which is perhaps
the case of greatest relevance. Restating this problem in terms
of f ,

f(li, pi) = pi(αx+ βx2)
(
ϕ(x) = αx+ βx2

)
.

This was solved with cubic space and time complexity as a
step in solving a problem related to message delay. This larger
problem, treated first by Humblet [3] then Flores [9], was
solved with anO(n5)-time O(n3)-space algorithm that can
be altered to become anO(n4)-time O(n2)-space algorithm
using methods in this paper.

Another quasiarithmetic penalty is the exponential penalty,
that brought about by the cost function

f(li, pi) = piD
tli

(
ϕ(x) = Dtx

)
(4)

for t > 0, D being the size of the output alphabet. This
was previously proposed by Campbell [4] and algorithmically
solved as an extension of Huffman’s algorithm (and thus with
linear time and space for sorted probability inputs) in [3], [7],
[10], [11]. As previously indicated, in [3], [7] this is a step in
minimizing the probability of buffer overflow in a queueing
system. Thus the quasiarithmetic framework includes the two
queueing-related source coding problems discussed in [3].

A related problem is that with the concave cost function

f(li, pi) = pi(1−Dtli)
(
ϕ(x) = 1−Dtx

)
for t < 0, which has a similar solution [7]. This problem
relates to a problem in [12] which is based on a scenario
presented by R´enyi in [13].

Whereas all of the above, being continuous inli and linear
in pi, are within the class of cases considered by Campbell,
the following convex problem is not, in that its range includes
infinity. Suppose we want the best code possible with the
constraint that all codes must fit into a structure withlmax

symbols. If our measure of the “best code” is linear, then the
appropriate penalty is

f(li, pi) =
{
pili, li ≤ lmax

∞, li > lmax
(5)

for some fixedlmax ≥ dlogD ne. This describes the length-
limited linear penalty, an objective solved by several algo-
rithms; see, e.g., [14]–[23] or [2] for a comprehensive list.
Most notable among these are the efficient Package-Merge
algorithm [16] forD = 2 and a less efficient dynamic pro-
gramming approach forD > 2 [15]. In this paper the Package-
Merge approach is extended to a generalized quasiarithmetic
convex coding algorithm.

Note that if the measure of a “best code” is nonlinear,
a combination of penalties should be used where length is
limited. For example, if we wish to minimize the probability
of buffer overflow in a queueing system with a limited length
constraint, we should combine (4) and (5):

f(li, pi) =
{
piDtli , li ≤ lmax

∞, li > lmax.
(6)

This problem can be solved via dynamic programming in a
manner similar to [14], but this approach takesΩ(n2lmax)

IEEE TRANSACTIONS ON INFORMATION THEORY 3

time andΩ(n2) space forD = 2 and greater complexity for
D > 2 [15]. Our approach improves on this considerably.

In addition to the above problems with previously known
applications — and penalties which result from combining
these problems — one might want to solve for a different
utility function in order to find a compromise among these
applications or another trade-off of codeword lengths. These
functions need not be like Campbell’s in that they need not
be linear inp; for example, consider

f(li, pi) = (1− pi)−li .

Although the author knows of no use for this particular cost
function, it is notable as corresponding to one of the simplest
convex-cost penalties of the form (3).

III. PROPERTIES

A. Bounds and the Subtranslatory Property

Campbell’s quasiarithmetic penalty formulation can be re-
stated as follows:

Given p = (p1, . . . , pn), pi > 0,∑
i pi = 1;

convex, monotonically increasing
ϕ : R+ → R+

Minimize{l} L(p, l, ϕ) =
∑

i piϕ(li)
subject to

∑
i 2−li ≤ 1;

li ∈ Z+.

(7)

In the case of linearϕ, the integer constraint is often removed
to obtain bounds related to entropy, as we do in the nonlinear
case:

Given p = (p1, . . . , pn), pi > 0,∑
i pi = 1;

convex, monotonically increasing
ϕ : R+ → R+

Minimize{l} L(p, l, ϕ) =
∑

i piϕ(li)
subject to

∑
i 2−li ≤ 1;

li ∈ R+.

(8)

Note that, givenp and ϕ, L†, the minimum for the relaxed
(real-valued) problem (8), will necessarily be less than or
equal toL∗, the minimum for the original (integer-constrained)
problem (7). Let l† and l∗ be corresponding minimizing
values for the relaxed and constrained problems, respectively.
Restating, and adding a fifth definition:

L∗ , min
P

i D−li≤1,

li∈Z+

L(p, l, ϕ)

l∗ , arg min
P

i D−li≤1,

li∈Z+

L(p, l, ϕ)

L† , min
P

i D−li≤1,

li∈R+

L(p, l, ϕ)

l† , arg min
P

i D−li≤1,

li∈R+

L(p, l, ϕ)

l‡ , (dl†1e, dl†2e, . . . , dl†ne).

This is a slight abuse ofarg min notation sinceL∗ could
have multiple corresponding optimal length distributions (l∗).
However, this is not a problem, as any such value will suffice.
Note too thatl‡ satisfies the Kraft inequality and the integer
constraint, and thusL(p, l‡, ϕ) ≥ L∗.

We obtain bounds for the optimal solution by noting that,
sinceϕ is monotonically increasing,

ϕ−1
(∑

i piϕ(l†i)
)

≤ ϕ−1 (
∑

i piϕ(l∗i))

≤ ϕ−1
(∑

i piϕ(l‡i)
)

< ϕ−1
(∑

i piϕ(l†i + 1)
)
.

(9)

These bounds are similar to Shannon redundancy bounds for
Huffman coding. In the linear/Shannon case,l†i = −log2pi,
so the last expression is

∑
i pi(l

†
i + 1) = 1 +

∑
i pil

†
i =

1 + H(p), whereH(p) is the Shannon entropy, soH(p) ≤∑
i pil∗i < 1+H(p). These Shannon bounds can be extended

to quasiarithmetic problems by first definingϕ-entropy as
follows:

Definition 3: Generalized entropyor ϕ-entropyis

H(p, ϕ) , inf
P

i D−li≤1,

li∈R+

L(p, l, ϕ) (10)

where here infimum is used because this definition applies to
codes with infinite, as well as finite, input alphabets [4].

Campbell defined this as a generalized entropy [4]; we go
further, by asking which cost functions,ϕ, have the following
property:

H(p, ϕ) ≤ L(p, l∗, ϕ) < 1 +H(p, ϕ). (11)

These bounds exist for the exponential case (4) with
H(p, ϕ) = Hα(p), whereα , (1 + t)−1, andHα(p) denotes
Rényi α-entropy [24]. The bounds extend to exponential costs
because they share with the linear costs (and only those costs)
a property known as thetranslatory property, described by
Aczél [25], among others:

Definition 4: A cost functionϕ (and its associated penalty)
is translatory if, for any l ∈ R

n
+, probability mass functionp,

and c ∈ R+,

L(p, l + c, ϕ) = L(p, l, ϕ) + c

wherel + c denotes addingc to eachli in l [25].
We broaden the collection of penalty functions satisfying

such bounds by replacing the translatory equality with an
inequality, introducing the concept of asubtranslatorypenalty:

Definition 5: A cost functionϕ (and its associated penalty)
is subtranslatoryif, for any l ∈ R

n
+, probability mass function

p, andc ∈ R+,

L(p, l + c, ϕ) ≤ L(p, l, ϕ) + c.
For such a penalty, (11) still holds.

If ϕ obeys certain regularity requirements, then we can
introduce a necessary and sufficient condition for it to be
subtranslatory. Suppose that the invertible functionϕ : R+ →
R+ is real analytic over a relevant compact interval. We might
choose this interval to be, for example,A = [δ, 1/δ] for some
δ ∈ (0, 1). (Let δ → 0 to show the following argument is

IEEE TRANSACTIONS ON INFORMATION THEORY 4

valid over allR+.) We assumeϕ−1 is also real analytic (with
respect to intervalϕ(A)). Thus all derivatives of the function
and its inverse are bounded.

Theorem 1:Given monotonically increasing real analytic
cost function ϕ and its real analytic inverseϕ−1, ϕ is
subtranslatory if and only if, for all positivel and all positive
p summing to1,∑

i

piϕ
′(li) ≤ ϕ′

(
ϕ−1

(∑
i

piϕ(li)

))
(12)

whereϕ′ is the derivative ofϕ.
Proof: First note thatϕ, ϕ−1, ϕ′, and (ϕ−1)′ are all

positive over their domain. Thus inequality (12) is equivalent
to (∑

i

piϕ
′(li)

)
· (ϕ−1)′

(∑
i

piϕ(li)

)
≤ 1. (13)

We show that, when (13) is true everywhere,ϕ is subtrans-
latory, and then we show the converse. Letε > 0. Using power
expansions of the form

g(x) + εg′(x) = g(x+ ε)±O(ε2)

on ϕ andϕ−1,

ϕ−1

(∑
i

piϕ(li)

)
+ ε

(a)
≥ ϕ−1

(∑
i

piϕ(li)

)

+ ε ·
(∑

i

piϕ
′(li)

)
· (ϕ−1)′

(∑
i

piϕ(li)

)
(b)
= ϕ−1

(∑
i

piϕ(li) + ε ·
∑

i

piϕ
′(li)

)
± O(ε2)

(c)
= ϕ−1

(∑
i

piϕ(li + ε)±O(ε2)

)
±O(ε2)

(d)
= ϕ−1

(∑
i

piϕ(li + ε)

)
±O(ε2).

(14)

Step (a) is due to (13), step (b) due to the power expansion
on ϕ−1, step (c) due to the power expansion onϕ, and step
(d) due to the power expansion onϕ−1 (where the bounded
derivative ofϕ−1 allows for the asymptotic term to be brought
outside the function).

Next, evoke the above inequalityc/ε times:

ϕ−1

(∑
i

piϕ(li + c)

)

≤ ε+ ϕ−1

(∑
i

piϕ(li + c− ε)

)
±O(ε2)

≤ · · ·
≤ ε

⌊ c
ε

⌋
+ ϕ−1

(∑
i

piϕ(li) + c− ε
⌊c
ε

⌋)
±O(ε)

≤ c+ ϕ−1

(∑
i

piϕ(li)

)
±O(ε).

(15)

Taking ε→ 0,

ϕ−1

(∑
i

piϕ(li + c)

)
≤ c+ ϕ−1

(∑
i

piϕ(li)

)
.

Thus, the fact of (12) is sufficient to know that the penalty is
subtranslatory.

To prove the converse, suppose
∑

i piϕ′(li) >
ϕ′
(
ϕ−1 (

∑
i piϕ(li))

)
for some valid l and p. Because

ϕ is analytic, continuity implies that there existδ0 > 0 and
ε0 > 0 such that

∑
i

piϕ
′(l′i) ≥ (1 + δ0) · ϕ′

(
ϕ−1

(∑
i

piϕ(l′i)

))

for all l′ ∈ [l, l + ε0). The chain of inequalities above reverse
in this range with the additional multiplicative constant. Thus
(14) becomes

ϕ−1

(∑
i

piϕ(l′i)

)
+ (1 + δ0)ε

≤ ϕ−1

(∑
i

piϕ(l′i + ε)

)
±O(ε2)

for l′ ∈ [l, l + ε0), and (15) becomes, for anyc ∈ (0, ε0),

ϕ−1

(∑
i

piϕ(li + c)

)

≥ (1 + δ0)c+ ϕ−1

(∑
i

piϕ(li)

)
±O(ε)

which, takingε→ 0, similarly leads to

ϕ−1

(∑
i

piϕ(li + c)

)

≥ (1 + δ0)c+ ϕ−1

(∑
i

piϕ(li)

)

> c+ ϕ−1

(∑
i

piϕ(li)

)

and thus the subtranslatory property fails and the converse is
proved.

Therefore, forϕ satisfying (12), we have the bounds of
(11) for the optimum solution. Note that the right-hand side
of (12) may also be writtenϕ′ (L(p, l, ϕ)); thus (12) indicates
that the average derivative ofϕ at the codeword length values
is at most the derivative ofϕ at the value of the penalty for
those length values.

The linear and exponential penalties satisfy these equivalent
inequalities with equality. Another family of cost functions that
satisfies the subtranslatory property isϕ(li) = lai for fixed
a ≥ 1, which corresponds to

L(p, l, ϕ) =

(∑
i

pil
a
i

)1/a

.

IEEE TRANSACTIONS ON INFORMATION THEORY 5

Proving this involves noting that Lyapunov’s inequality for
moments of a random variable yields(∑

i

pil
a−1
i

) 1
a−1

≤
(∑

i

pil
a
i

) 1
a

which leads to

a ·
(∑

i

pil
a−1
i

)
≤ a ·

(∑
i

pil
a−1
i

) a−1
a

which, becauseϕ′(x) = axa−1, is

∑
i

piϕ
′(li) ≤ ϕ′

(
ϕ−1

(∑
i

piϕ(li)

))

the inequality we desire.
Another subtranslatory penalty is the quadratic quasiarith-

metic penalty of (2), in which

ϕ(x) = αx+ βx2

for α, β ≥ 0. This has already been shown forβ = 0; when
β > 0,

ϕ′(x) = α+ 2βx

ϕ−1(x) =

√(
α

2β

)2

− x

β
− α

2β

L(p, l, ϕ) =

√√√√(α

2β

)2

+
∑

i

pi

(
α

β
li + l2i

)
− α

2β
.

We achieve the desired inequality through algebra:

∑
i

pil
2
i ≥

(∑
i

pili

)2

α2 + 4β
∑

i

pi(αli + βl2i) ≥
(∑

i

pi(α+ 2βli)

)2

√
α2 + 4β

∑
i

pi(αli + βl2i) ≥
∑

i

pi(α+ 2βli)

ϕ′(L(p, l, ϕ)) ≥
∑

i

piϕ
′(li).

We thus have an important property that holds for several cases
of interest.

One might be tempted to conclude that everyϕ — or every
convex and/or concaveϕ — is subtranslatory. However, this
is easily disproved. Consider convexϕ(x) = x3 +11x. Using
Cardano’s formula, it is easily seen that (12) does not hold
for p = (1

3
, 2

3
) and l = (1

2
, 1). The subtranslatory test also

fails for ϕ(x) =
√
x. Thus we must test any given penalty

for the subtranslatory property in order to use the redundancy
bounds.

B. Existence of an Optimal Code

Because all costs are positive, the redundancy bounds that
are a result of a subtranslatory penalty extend to infinite
alphabet codes in a straightforward manner. These bounds
thus show that a code with finite penalty exists if and only
if the generalized entropy is finite, a property we extend to
nonsubtranslatory penalties in the next subsection. However,
one must be careful regarding the meaning of an “optimal
code” when there are an infinite number of possible codes
satisfying the Kraft inequality with equality. Must there exist
an optimal code, or can there be an infinite sequence of
codes of decreasing penalty without a code achieving the limit
penalty value?

Fortunately, the answer is the former, as the existence results
of Linder, Tarokh, and Zeger in [26] can be extended to
quasiarithmetic penalties. Consider continuous strictly mono-
tonic ϕ : R+ → R+ (as proposed by Campbell) andp =
(p1, p2, . . .) such that

L∗(p, ϕ) , inf
P

i D−li≤1,

li∈Z

ϕ−1

(∞∑
i=1

piϕ(li)

)
(16)

is finite. Consider, for an arbitraryn ∈ Z+, optimizing forϕ
with weights

p(n) , (p1, p2, . . . , pn, 0, 0, . . .).

(We call the entries to this distribution “weights” because they
do not necessarily add up to1.) Denote the optimal code a
truncated code, one with codeword lengths

l(n) , {l(n)
1 , l

(n)
2 , . . . , l(n)

n ,∞,∞, . . .}.
Thus, for convenience,l(j)i = ∞ for i > j. These lengths
are also optimal for(

∑n
j=1 pj)−1 · p(n), the distribution of

normalized weights.
Following [26], we say that a sequence of codeword length

distributionsl(1), l(2), l(3), . . . convergesto an infinite prefix
code with codeword lengthsl = {l1, l2, . . .} if, for eachi, the
ith length in each distribution in the sequence is eventuallyli
(i.e., if each sequence converges toli).

Theorem 2:Given quasiarithmetic increasingϕ andp such
thatL∗(p, ϕ) is finite, the following hold:

1) There exists a sequence of truncated codeword lengths
that converges to optimal codeword lengths forp; thus
the infimum is achievable.

2) Any optimal code forp must satisfy the Kraft inequality
with equality.

Proof: Because here we are concerned only with cases
in which the first length is at least1, we may restrict ourselves
to the domain[ϕ−1(p1ϕ(1)),∞). Recall

L∗(p, ϕ) = inf
P

i D−li≤1,

li∈Z

ϕ−1

(∞∑
i=1

piϕ(li)

)
<∞.

Then there exists near-optimall′ = {l′1, l′2, l′3, . . .} ∈ Z
∞
+

such that

ϕ−1

(∞∑
i=1

piϕ(l′i)

)
< L∗(p, ϕ) + 1 and

∞∑
i=1

D−l′i ≤ 1

IEEE TRANSACTIONS ON INFORMATION THEORY 6

and thus, for any integern,

ϕ−1

(
n∑

i=1

piϕ(l′i)

)
< L∗(p, ϕ) + 1 and

n∑
i=1

D−l′i < 1.

So, using this to approximate the behavior of a minimizing
l(n), we have

ϕ−1

(
n∑

i=1

piϕ(l(n)
i)

)
≤ ϕ−1

(
n∑

i=1

piϕ(l′i)

)
< L∗(p, ϕ) + 1

yielding an upper bound on terms

pjϕ(l(n)
j) ≤

n∑
i=1

piϕ(l(n)
i)

< ϕ (L∗(p, ϕ) + 1)

for all j. This implies

l
(n)
j < ϕ−1

(
ϕ(L∗(p, ϕ) + 1)

pj

)
.

Thus, for anyi ∈ Z+, the sequencel(1)i , l
(2)
i , l

(3)
i , . . . is

bounded for alll(j)i 6= ∞, and thus has a finite set of values
(including ∞). It is shown in [26] that this suffices for the
desired convergence, but for completeness a slightly altered
proof follows.

Because each sequencel(1)i , l
(2)
i , l

(3)
i , . . . has a finite

set of values, every infinite indexed subsequence for a
given i has a convergent subsequence. An inductive ar-
gument implies that, for anyk, there exists a subse-

quence indexed bynk
j such thatl(n

k
1)

i , l
(nk

2)
i , l

(nk
3)

i , . . . con-

verges for all i ≤ k, where l
(nk

1)
i , l

(nk
2)

i , l
(nk

3)
i , . . . is a

subsequence ofl(n
k′
1)

i , l
(nk′

2)
i , l

(nk′
3)

i , . . . for k′ ≤ k. Code-
word length distributionsl(n

1
1), l(n

2
2), l(n

3
3), . . . (which we call

l(n1), l(n2), l(n3), . . .) thus converge to the codeword lengths of
an infinite codeĈ with codeword lengthŝl = {l̂1, l̂2, l̂3, . . .}.
Clearly each codeword length distribution satisfies the Kraft
inequality. The limit does as well then; were it exceeded, we
could find i′ such that

i′∑
i=1

D−bli > 1

and thusn′ such that

i′∑
i=1

D−l
(n′)
i > 1

causing a contradiction.
We now show thatĈ is optimal. Let {λ1, λ2, λ3 . . .} be

the codeword lengths of an arbitrary prefix code. For everyk,
there is aj ≥ k such that̂li = l

(nm)
i for any i ≤ k if m ≥ j.

Due to the optimality of eachl(n), for all m ≥ j:

k∑
i=1

piϕ(l̂i) =
k∑

i=1

piϕ(l(nm)
i)

≤
nm∑
i=1

piϕ(l(nm)
i)

≤
nm∑
i=1

piϕ(λi)

≤
∞∑

i=1

piϕ(λi)

and, takingk → ∞,
∑

i piϕ(l̂i) ≤ ∑
i piϕ(λi), leading

directly to ϕ−1
(∑

i piϕ(l̂i)
)
≤ ϕ−1 (

∑
i piϕ(λi)) and the

optimality of Ĉ.
Suppose the Kraft inequality is not satisfied with equality

for optimal codeword lengthŝl = {l̂1, l̂2, . . .}. We can then
produce a strictly superior code. There is ak ∈ Z+ such that
D−lk+1 +

∑
iD

−li ≤ 1. Consider code{l̂1, l̂2, . . . , l̂k−1, l̂k −
1, l̂k+1, l̂k+2, . . .}. This code satisfies the Kraft inequality and

has penaltyϕ−1
(∑

i piϕ(l̂i) + pk(ϕ(l̂k − 1) − ϕ(l̂k))
)

<

ϕ−1
(∑

i piϕ(l̂i)
)

. Thus l̂ is not optimal. Therefore the Kraft
inequality must be satisfied with equality for optimal infinite
codes.

Note that this theorem holds not just for subtranslatory
penalties, but for any quasiarithmetic penalty.

C. Finiteness of Penalty for an Optimal Code

Recall the definition of (10),

H(p, ϕ) = inf
P

i D−li≤1,

li∈R+

ϕ−1

(∑
i

piϕ(li)

)

for ϕ : R+ → R+.
Theorem 3:If H(p, ϕ) is finite and eitherϕ is subtransla-

tory or ϕ(x+ 1) = O(ϕ(x)) (which includes all concave and
all polynomialϕ), then the coding problem of (16),

L∗(p, ϕ) = inf
P

i D−li≤1,

li∈Z

ϕ−1

(∑
i

piϕ(li)

)

has a minimizingl∗ resulting in a finite value forL∗(p, ϕ).
Proof: If ϕ is subtranslatory, thenL∗(p, ϕ) < 1 +

H(p, ϕ) <∞. If ϕ(x+1) = O(ϕ(x)), then there areα, β > 0
such thatϕ(x+ 1) < α+ βϕ(x) for all x. Then

ϕ−1

(∑
i

piϕ(li + 1)

)

< ϕ−1

(∑
i

pi(α+ βϕ(li))

)

= ϕ−1

(
α+ β

∑
i

piϕ(li)

)
.

IEEE TRANSACTIONS ON INFORMATION THEORY 7

So
L∗(p, ϕ)
< L(p, l† + 1, ϕ)
< ϕ−1 (α+ βϕ (H(p, ϕ)))
<∞

and the infimum, which we know to also be a minimum, is
finite.

IV. A LGORITHMS

A. Nodeset Notation

We now examine algorithms for finding minimum penalty
codes for convex cases with finite alphabets. We first present
a notation for codes based on an approach of Larmore [6].
This notation is an alternative to the well known code tree
notation, e.g., [27], and it will be the basis for an algorithm
to solve the generalized quasiarithmetic (and thus Campbell’s
quasiarithmetic) convex coding problem.

In the literature nodeset notation is generally used for binary
alphabets, not for general alphabet coding. Although we briefly
sketch how to adapt this technique to general output alphabet
coding at the end of Subsection IV-E, an approach fully
explained in [28], until then we concentrate on the binary case
(D = 2).

The key idea:Each node(i, l) represents both the share
of the penaltyL̃(p, l, f) (weight) and the share of the Kraft
sumκ(l) (width) assumed for thelth bit of theith codeword.
If we show that total weight is an increasing function of the
penalty and show a one-to-one correspondence between opti-
mal nodesets and optimal codes, we can reduce the problem to
an efficiently solvable problem, the Coin Collector’s problem.

In order to do this, we first assume bounds on the maximum
codeword length of possible solutions, e.g., the maximum
unary codeword length ofn− 1. Alternatively, bounds might
be explicit in the definition of the problem. Consider for
example the length-limited coding problems of (5) and (6),
upper bounded bylmax. A third possibility is that maximum
length is implicit in some property of the set of optimal
solutions [29]–[31]; we explore this in Subsection IV-E.

We therefore restrict ourselves to codes withn codewords,
none of which has greater length thanlmax, where lmax ∈
[dlog2 ne, n − 1]. With this we now introduce thenodeset
notation for binary coding:

Definition 6: A node is an ordered pair of integers(i, l)
such thati ∈ {1, . . . , n} and l ∈ {1, . . . , lmax}. Call the
set of all nlmax possible nodesI. Usually I is arranged in
a grid; see example in Fig. 1. The set of nodes, ornodeset,
corresponding to itemi (assigned codewordci with length li)
is the set of the firstli nodes of columni, that is,ηl(i) ,
{(j, l) | j = i, l ∈ {1, . . . , li}}. The nodeset corresponding
to length distributionl is η(l) ,

⋃
i ηl(i); this corresponds to

a set ofn codewords, a code. We say a node(i, l) haswidth
ρ(i, l) , 2−l andweightµ(i, l) , f(l, pi)− f(l− 1, pi), as in
the example in Fig. 1.

If I has a subsetN that is a valid nodeset, then it is
straightforward to find the corresponding length distribution
and thus a code. We can find an optimal valid nodeset using
the Coin Collector’s problem.

B. The Coin Collector’s Problem

Let 2Z denote the set of all integer powers of two. The
Coin Collector’s problem of sizem considersm “coins” with
width ρi ∈ 2Z; one can think of width as coin face value,
e.g.,ρi = 1

4 for a quarter dollar (25 cents). Each coin also has
weight µi ∈ R. The final problem parameter is total width,
denotedt. The problem is then:

Minimize{B⊆{1,...,m}}
∑

i∈B µi

subject to
∑

i∈B ρi = t.
(17)

We thus wish to choose coins with total widtht such that
their total weight is as small as possible. This problem is
an input-restricted variant of the knapsack problem, which, in
general, is NP-hard; no polynomial-time algorithms are known
for such NP-hard problems [32], [33]. However, given sorted
inputs, a linear-time solution to (17) was proposed in [16]. The
algorithm in question is called thePackage-Merge algorithm.

In the Appendix, we illustrate and prove a slightly simplified
version of the Package-Merge algorithm. This algorithm al-
lows us to solve the generalized quasiarithmetic convex coding
problem (3). When we use this algorithm, we letI represent
them items along with their weights and widths. The optimal
solution to the problem is a function of total widtht and items
I. We denote this solution asCC(I, t) (read, “the [optimal]
coin collection forI and t”). Note that, due to ties, this need
not be unique, but we assume that one of the optimal solutions
is chosen; at the end of Subsection IV-D, we discuss which
of the optimal solutions is best to choose.

C. A General Algorithm

We now formalize the reduction from the generalized
quasiarithmetic convex coding problem to the Coin Collector’s
problem.

We assert that any optimal solutionN of the Coin Collec-
tor’s problem for t = n − 1 on coinsI = I is a nodeset
for an optimal solution of the coding problem. This yields a
suitable method for solving generalized quasiarithmetic convex
penalties.

To show this reduction, first defineρ(N) for anyN = η(l):

ρ(N) ,
∑

(i,l)∈N

ρ(i, l)

=
n∑

i=1

li∑
l=1

2−l

=
n∑

i=1

(
1− 2−li

)
= n−

n∑
i=1

2−li

= n− κ(l).

Because the Kraft inequality isκ(l) ≤ 1, ρ(N) must lie in
[n−1, n) for prefix codes. The Kraft inequality is satisfied with
equality at the left end of this interval. Optimal binary codes
have this equality satisfied, since a strict inequality implies that
the longest codeword length can be shortened by one, strictly

IEEE TRANSACTIONS ON INFORMATION THEORY 8

l (level)

i (item)

µ(1, 1) = p1 µ(2, 1) = p2 µ(3, 1) = p3 µ(4, 1) = p4

µ(1, 2) = 3p1 µ(2, 2) = 3p2 µ(3, 2) = 3p3 µ(4, 2) = 3p4

µ(1, 3) = 5p1 µ(2, 3) = 5p2 µ(3, 3) = 5p3 µ(4, 3) = 5p4

ρ(1, 1) = 1
2 ρ(2, 1) = 1

2 ρ(3, 1) = 1
2 ρ(4, 1) = 1

2

ρ(1, 2) = 1
4 ρ(2, 2) = 1

4 ρ(3, 2) = 1
4 ρ(4, 2) = 1

4

ρ(1, 3) = 1
8 ρ(2, 3) = 1

8 ρ(3, 3) = 1
8 ρ(4, 3) = 1

8

1

1 2

2

3

3 4

Fig. 1. The set of nodesI with widths {ρ(i, l)} and weights{µ(i, l)} for f(li, pi) = pil
2
i , n = 4, lmax = 3

decreasing the penalty without violating the inequality. Thus
the optimal solution hasρ(N) = n− 1.

Also define:

Mf (l, p) , f(l, p)− f(l− 1, p)

L0(p, f) ,
n∑

i=1

f(0, pi)

µ(N) ,
∑

(i,l)∈N

µ(i, l).

Note that

µ(N) =
∑

(i,l)∈N

µ(i, l)

=
n∑

i=1

li∑
l=1

Mf(l, pi)

=
n∑

i=1

f(li, pi)−
n∑

i=1

f(0, pi)

= L̃(p, l, f)− L0(p, f).

L0(p, f) is a constant given fixed penalty and probability
distribution. Thus, if the optimal nodeset corresponds to a valid
code, solving the Coin Collector’s problem solves this coding
problem. To prove the reduction, we need to prove that the
optimal nodeset indeed corresponds to a valid code. We begin
with the following lemma:

Lemma 1:Suppose thatN is a nodeset of widthx2−k + r
wherek andx are integers and0 < r < 2−k. ThenN has a
subsetR with width r. [16]

Proof: We use induction on the cardinality of the set.
The base case|N | = 1 is trivial since thenx = 0. Assume
the lemma holds for all|N | < n, and suppose|Ñ | = n. Let
ρ∗ = minj∈Ñ ρj and j∗ = arg minj∈Ñ ρj . We can seeρ∗ as

the smallest contribution to the width of̃N andr as the portion
of the binary expansion of the width of̃N to the right of2−k.
Then clearlyr must be an integer multiple ofρ∗. If r = ρ∗,
R = {j∗} is a solution. Otherwise letN ′ = Ñ\{j∗} (so
|N ′| = n− 1) and letR′ be the subset obtained from solving
the lemma for setN ′ of width r − ρ∗. ThenR = R′ ∪ {j∗}.

We are now able to prove the main theorem:
Theorem 4:SupposeN is a solution of the Coin Collector’s

problem for t = ρ(N) = n − 1 with ρ(i, l) and µ(i, l)
as defined above forf(l, p) convex in l. Then there is
a correspondinglN such thatN = η(lN) and µ(N) =
minl L̃(p, l, f)− L0(p, f).

Proof: By monotonicity of the penalty function, any op-
timal solution satisfies the Kraft inequality with equality. Thus
all optimal length distribution nodesets haveρ(η(l)) = n− 1.
SupposeN is a solution to the Coin Collector’s problem but is
not a valid nodeset of a length distribution. Then there exists an
(i, l) with l > 1 such that(i, l) ∈ N and(i, l−1) ∈ I\N . Let
R′ = N ∪{(i, l−1)}\{(i, l)}. Thenρ(R′) = n−1+2−l and,
due to convexity,µ(R′) ≤ µ(N). Thus, using Lemma 1 with
k = 0, x = n − 1, andr = 2−l, there exists anR ⊂ R′ such
that ρ(R) = 2−l and µ(R′\R) < µ(R′) ≤ µ(N). Since we
assumedN to be an optimal solution of the Coin Collector’s
problem, this is a contradiction, and thus any optimal solution
of the Coin Collector’s problem corresponds to an optimal
length distribution.

Note that the generality of this algorithm makes it trivially
extensible to problems of the form

∑
i fi(li, pi) for n different

functionsfi. This might be applicable if we desire a nonlinear
weighting for codewords — such as an additional utility
weight — in addition to and possibly independent of codeword
length and probability.

Because the Coin Collector’s problem is linear in time and

IEEE TRANSACTIONS ON INFORMATION THEORY 9

problem type time space
flat, d.m. O(n log n) O(n log n)

space-optimized O(n log n) O(n)
not flat, d.m. O(n2) O(n2)

space-optimized O(n2) O(n)

flat, not d.m. O(n log2 n) O(n log n)
not flat, not d.m. O(n2 log n) O(n2)

TABLE I

COMPLEXITY FOR VARIOUS TYPES OF INPUTS(D.M. = DIFFERENTALLY

MONOTONIC)

space, the overall algorithm finds an optimal code inO(nlmax)
time and space for any “well-behaved”f(li, pi), that is, any
f of the form specified for which same-width inputs would
automatically be presorted by weight for the Coin Collector’s
problem.

The complexity of the algorithm in terms ofn alone
depends on the structure of bothf and p, because, if we
can upper-bound the maximum length codeword, we can
run the Package-Merge algorithm with fewer input nodes. In
addition, if f is not “well-behaved,” input to the Package-
Merge algorithm might need to be sorted.

To quantify these behaviors, we introduce one definition and
recall another:

Definition 7: A (coding) problem space is called aflat class
if there exists a constant upper boundu such thatmaxi li

log n < u
for any solutionl.
For example, the space of linear Huffman coding problems
with all pi ≥ 1

2n is a flat class. (This may be shown using
[30].)

Recall Definition 1 given in Section I: A cost function
f(l, p) and its associated penaltỹL aredifferentially monotonic
or d.m. if, for every l > 1, wheneverf(l− 1, pi) is finite and
pi > pj , f(l, pi)− f(l− 1, pi) > f(l, pj)− f(l− 1, pj). This
implies thatf is continuous inp at all but a countable number
of points. Without loss of generality, we consider only cases
in which it is continuous everywhere.

If f(l, p) is differentially monotonic, then there is no
need to sort the input nodes for the algorithm. Otherwise,
sorting occurs onlmax rows with O(n logn) on each row,
O(nlmax logn) total. Also, if the problem space is a flat class,
lmax is O(logn); it is O(n) in general. Thus time complexity
for this solution ranges fromO(n logn) to O(n2 logn) with
space requirementO(n logn) toO(n2); see Table I for details.
As indicated in the table, space complexity can be reduced in
differentially monotonic instances.

D. A Linear-Space Algorithm

Note that the length distribution returned by the algorithm
need not have the property thatli ≤ lj wheneveri < j. For
example, ifpi = pj , we are guaranteed no particular inequality
relation betweenli and lj since we did not specify a method
for breaking ties. Also, even if allpi were distinct, there
are cost functions for which we would expect the inequality
relation reversed from the linear case. An example of this
is f(li, pi) = p−1

i 2li , although this represents no practical
problem that the author is aware of.

Practical cost functions will, given a probability distribution
for nonincreasingpi, generally have at least one optimal
code of monotonically nondecreasing length. Differentially
monotonicity is a sufficient condition for this, and we can
improve upon the algorithm by insisting that the problem be
differentially monotonic and all entriespi in p be distinct;
the latter condition we later relax. The resulting algorithm
uses only linear space and quadratic time. First we need a
definition:

Definition 8: A monotonic nodeset,N , is one with the
following properties:

(i, l) ∈ N ⇒ (i+ 1, l) ∈ N for i < n (18)

(i, l) ∈ N ⇒ (i, l − 1) ∈ N for l > 1. (19)

This definition is equivalent to that given in [16].
An example of a monotonic nodeset is the set of nodes

enclosed by the dashed line in Fig. 2. Note that a nodeset is
monotonic only if it corresponds to a length distributionl with
lengths sorted in nondecreasing order.

Lemma 2: If a problem is differentially monotonic and
monotonically increasing and convex in eachli, and ifp has no
repeated values, then any optimal solutionN = CC(I, n− 1)
is monotonic.

Proof: The second monotonic property (19) was proved
for optimal nodesets in Theorem 4, and the first is now proved
with a simple exchange argument, as in [34, pp. 97–98].
Suppose we have optimalN that violates the first property
(18). Then there exist unequali and j such thatpi < pj and
li < lj for optimal codeword lengthsl (N = η(l)). Consider
l′ with lengths for symbolsi and j interchanged. Then

L̃(p, l′, f)− L̃(p, l, f)
=
∑

k f(l′k, pk)−∑k f(lk, pk)
= (f(lj, pj) − f(li, pj))− (f(lj, pi)− f(li, pi))
=
∑lj

l=li+1 (Mf (l, pj) −Mf(l, pi))
< 0

where we recall thatMf(l, p) , f(l, p)− f(l − 1, p) and the
final inequality is due to differential monotonicity. However,
this implies thatl is not an optimal code, and thus we cannot
have an optimal nodeset without monotonicity unless values
in p are repeated.

Taking advantage of monotonicity to trade off a constant
factor of time for drastically reduced space complexity has
been done in [6] for the case of the length-limited (linear)
penalty (5). We now extend this to all convex differentially
monotonic cases.

Note that the total width of items that are each less than
or equal to widthρ is less than2nρ. Thus, when we are
processing items and packages of widthρ, fewer than2n
packages are kept in memory. The key idea in reducing space
complexity is to keep only four attributes of each package in
memory instead of the full contents. In this manner, we use
linear space while retaining enough information to reconstruct
the optimal nodeset in algorithmic postprocessing.

Definelmid , b 1
2
(lmax +1)c. Package attributes allow us to

divide the problem into two subproblems with total complexity

IEEE TRANSACTIONS ON INFORMATION THEORY 10

that is at most half that of the original problem. For each
packageS, we retain the following attributes:

1) µ(S) ,
∑

(i,l)∈S µ(i, l)
2) ρ(S) ,

∑
(i,l)∈S ρ(i, l)

3) ν(S) , |S ∩ Imid|
4) ψ(S) ,

∑
(i,l)∈S∩Ihi

ρ(i, l)

whereIhi , {(i, l) | l > lmid} andImid , {(i, l) | l = lmid}.
We also defineIlo , {(i, l) | l < lmid}.

This retains enough information to complete the “first run”
of the algorithm withO(n) space. The result will be the
package attributes for the optimal nodesetN . Thus, at the
end of this first run, we know the value form = ν(N), and
we can considerN as the disjoint union of four sets, shown
in Fig. 2:

1) A = nodes inN ∩ Ilo with indices in[1, n−m]
2) B = nodes inN ∩ Ilo with indices in[n−m+ 1, n]
3) C = nodes inN ∩ Imid

4) D = nodes inN ∩ Ihi.

Due to monotonicity ofN , it is trivial that C = [n − m +
1, n] × {lmid} andB = [n −m + 1, n] × [1, lmid − 1]. Note
then thatρ(C) = m2−lmid and ρ(B) = m[1 − 2−(lmid−1)].
Thus we need merely to recompute which nodes are inA and
in D.

BecauseD is a subset ofIhi, ρ(D) = ψ(N) and ρ(A) =
ρ(N)−ρ(B)−ρ(C)−ρ(D). Given their respective widths,A
is a minimal weight subset of[1, n−m]× [1, lmid− 1] andD
is a minimal weight subset of[n−m+1, n]× [lmid+1, lmax].
The nodes at each level ofA andD may be found by recursive
calls to the algorithm. In doing so, we use onlyO(n) space.
Time complexity, however, remains the same; we replace one
run of an algorithm onnlmax nodes with a series of runs, first
one onnlmax nodes, then two on an average of at most1

4
nlmax

nodes each, then four on116nlmax, and so forth. Formalizing
this analysis:

Theorem 5:The above recursive algorithm for generalized
quasiarithmetic convex coding hasO(nlmax) time complexity.
[16]

Proof: As indicated, this recurrence relation is considered
and proved in [16, pp. 472–473], but we analyze it here for
completeness. To find time complexity, set up the following
recurrence relation: LetT (n, l) be the worst case time to find
the minimal weight subset of[1, n]× [1, l] (of a given width),
assuming the subset is monotonic. Then there exist constants
c1 and c2 such that, if we definêl , lmid − 1 ≤ b l

2c and
ľ , l − l̂ − 1 ≤ b l

2c, and we let an adversary choose the
correspondinĝn+ ň = n,

T (n, l) ≤ c1n for l < 3
T (n, l) ≤ c2nl + T (n̂, l̂) + T (ň, ľ) for l ≥ 3

where l < 3 is the base case. ThenT (n, l) = O(τ(n, l)),
whereτ is any function satisfying the recurrence

τ(n, l) ≥ c1n for l < 3
τ(n, l) ≥ c2nl + τ(n̂, l

2
) + τ(n− n̂, l

2
) for l ≥ 3

which τ(n, l) = (c1 +2c2)nl does. Thus, the time complexity
is O(nlmax).

The overall complexity isO(n) space andO(nlmax) time
— O(n logn) considering only flat classes,O(n2) in general,
as in Table I.

However, the assumption of distinctpi’s puts an undesirable
restriction on our input. In their original (linear) algorithm,
Larmore and Hirschberg suggest modifying the probabilities
slightly to make them distinct [16], but this is unnecessarily
inelegant, as the resulting algorithm has the drawbacks of
possibly being slightly nonoptimal and being nondeterministic;
that is, different implementations of the algorithm could result
in the same input yielding different outputs. A deterministic
variant of this approach could involve modifications by multi-
ples of a suitably small variableε > 0 to make identical values
distinct. In [35], another method of tie-breaking is presented
for alphabetic length-limited codes. Here, we present a simpler
alternative analogous to this approach, one which is both
deterministic and applicable to all differentially monotonic
instances.

Recall thatp is a nonincreasing vector. Thus items of a
given width are sorted for use in the Package-Merge algorithm;
use this order for ties. For example, if we use the nodes in
Fig. 1 — n = 4, f(l, p) = pl2 — with probability p =
(0.5, 0.2, 0.2, 0.1), then nodes(4, 3) and(3, 3) are the first to
be paired, the tie between(2, 3) and (3, 3) broken by order.
Thus, at any step, all identical-width items in one package have
adjacent indices. Recall that packages of items will be either
in the final nodeset or absent from it as a whole. This scheme
then prevents any of the nonmonotonicity that identicalpi’s
might bring about.

In order to ensure that the algorithm is fully deterministic —
whether or not the linear-space version is used — the manner
in which packages and single items are merged must also
be taken into account. We choose to merge nonmerged items
before merged items in the case of ties, in a similar manner
to the two-queue bottom-merge method of Huffman coding
[27], [36]. Thus, in our example, the node(1, 2) is chosen
whereas the package of items(4, 3) and (3, 3) is not. This
leads to the optimal length vectorl = (2, 2, 2, 2), rather than
l = (1, 2, 3, 3) or l = (1, 3, 2, 3), which are also optimal. As
in bottom-merge Huffman coding, the code with the minimum
reverse lexicographical order among optimal codes is the one
produced. This is also the case if we use the position of the
“last” node in a package (in terms of the value ofnl + i) in
order to choose those with lower values, as in [35]. However,
the above approach, which is easily shown to be equivalent
via induction, eliminates the need for keeping track of the
maximum value ofnl + i for each package.

E. Further Refinements

In this case using a bottom-merge-like coding method has
an additional benefit: We no longer need assume that all
pi 6= 0 to assure that the nodeset is a valid code. In finding
optimal binary codes, of course, it is best to ignore an item
with pi = 0. However, consider nonbinary output alphabets,
that is,D > 2. As in Huffman coding for such alphabets,
we must add “dummy” values ofpi = 0 to assure that the
optimal code has the Kraft inequality satisfied with equality, an

IEEE TRANSACTIONS ON INFORMATION THEORY 11

2−1

2−lmid

2−lmax

lmid

nn−m

lmax

l (level)

i (item)

ρ (width)

1

1
A B

C

D

N

Fig. 2. The set of nodesI , an optimal nodesetN , and disjoint subsetsA, B, C, D

assumption underlying both the Huffman algorithm and ours.
The number of dummy values needed ismod(D− n,D− 1)
wheremod(x, y) , x − ybx

y
c and where the dummy values

each consist oflmax nodes, each node with the proper width
and with weight0. With this preprocessing step, finding an
optimal code should proceed similarly to the binary case, with
adjustments made for both the Package-Merge algorithm and
the overall coding algorithm due to the formulation of the
Kraft inequality and maximum length. A complete algorithm
is available, with proof of correctness, in [28].

Note that we have assumed for all variations of this algo-
rithm that we knew a maximum bound for length, although in
the overall complexity analysis for binary coding we assumed
this wasn − 1 (except for flat classes). We now explore a
method for finding better upper bounds and thus a more effi-
cient algorithm. First we present a definition due to Larmore:

Definition 9: Consider penalty functionsf and g. We say
that g is flatter than f if, for probabilities p and p′ and
positive integersl and l′ where l′ > l, Mg(l, p)Mf (l′, p′) ≤
Mf (l, p)Mg(l′, p′) (where, again,Mf (l, p) , f(l, p)− f(l −
1, p)) [6].

A consequence of the Convex Hull Theorem of [6] is that,
given g flatter thanf , for any p, there existf -optimal l(f)

and g-optimal l(g) such thatl(f) is greater lexicographically
than l(g) (again, with lengths sorted largest to smallest). This
explains why the word “flatter” is used.

Thus, for penalties flatter than the linear penalty, we can
obtain a useful upper bound, reducing complexity. All convex
quasiarithmetic penalties are flatter than the linear penalty.
(There are some generalized quasiarithmetic convex coding
penalties that are not flatter than the linear penalty — e.g.,
f(li, pi) = lip

2
i — and some flatter penalties that are

not Campbell/quasiarithmetic — e.g.,f(li, pi) = 2li(pi +
0.1 sin πpi) — so no other similarly straightforward relation
exists.) For most penalties we have considered, then, we can
use the upper bounds in [30] or the results of a pre-algorithmic
Huffman coding of the symbols to find an upper bound on
codeword length.

A problem in which pre-algorithmic Huffman coding would
be useful is delay coding, in which the quadratic penalty (2)

is solved forO(n2) values ofα andβ [6]. In this application,
only one traditional Huffman coding would be necessary to
find an upper bound for all quadratic cases.

With other problems, we might wish to instead use a
mathematically derived upper bound. Using the maximum
unary codeword length ofn− 1 and techniques involving the
Golden Mean,Φ ,

√
5+1
2 , Buro in [30] gives the upper limit

of length for a (standard) binary Huffman codeword as

min
{⌊

logΦ

(
Φ + 1

pnΦ + pn−1

)⌋
, n− 1

}
which would thus be an upper limit on codeword length for
the minimal optimal code obtained using any flatter penalty
function, such as a convex quasiarithmetic function. This may
be used to reduce complexity, especially in a case in which
we encounter a flat class of problem inputs.

In addition to this, one can improve this algorithm by
adapting the binary length-limited Huffman coding techniques
of Moffat (with others) in [17]–[20], [22]. We do not explore
these, however, as these cannot improve asymptotic results
with the exception of a few special cases. Other approaches
to length-limited Huffman coding with improved algorithmic
complexity [21], [23] are not suited for extension to nonlinear
penalties.

V. CONCLUSION

With a similar approach to that taken by Shannon for Shan-
non entropy and Campbell for R´enyi entropy, we have shown
redundancy bounds and related properties for optimal codes
using Campbell’s quasiarithmetic penalties and generalized
entropies. For convex quasiarithmetic costs, our algorithms,
based upon Larmore and Hirschberg’s methods for the linear
penalty, can efficiently find an optimal code. Such algorithms
can be readily extended to the generalized quasiarithmetic
convex class of penalties, as well as to the delay penalty, the
latter of which results in more quickly finding an optimal code
for delay channels.

One might ask whether the aforementioned properties can
be extended; for example, can improved redundancy bounds
similar to [12], [37]–[40] be found? It is an intriguing question,

IEEE TRANSACTIONS ON INFORMATION THEORY 12

albeit one that seems rather difficult to answer given that such
general penalties lack a Huffman coding tree structure. In
addition, although we know that optimal codes for infinite
alphabets exist given the aforementioned conditions, we do not
know how to find them. This, as with many infinite alphabet
coding problems, remains open.

It would also be interesting if the algorithms could be
extended to other penalties, especially since complex models
of queueing can lead to other penalties aside from the delay
penalty mentioned here. Also, note that the monotonicity prop-
erty of the examples we consider implies that the resulting op-
timal code can be alphabetic, that is, lexicographically ordered
by item number. If we desire items to be in a lexicographical
order different from that of probability, however, the alphabetic
and nonalphabetic cases can have different solutions. This was
discussed for the length-limited penalty (5) in [35]; it might
be of interest to generalize it to other penalties using similar
techniques and to prove properties of alphabetic codes for such
penalties.

ACKNOWLEDGMENTS

The author wishes to thank Thomas Cover, John Gill, and
Andrew Brzezinski for feedback on this paper and research, as
well as the anonymous reviewers for their numerous sugges-
tions for improvement. Discussions and comments from the
Stanford Information Theory Group and Benjamin Van Roy
are also greatly appreciated, as is encouragement from Brian
Marcus.

APPENDIX

THE PACKAGE-MERGE ALGORITHM

Here we illustrate and prove the correctness of a recursive
version of Package-Merge algorithm for solving the Coin
Collector’s problem. This algorithm was first presented in [16],
which also has a linear-time iterative implementation.

Restating the Coin Collector’s problem:

Minimize{B⊆{1,...,m}}
∑

i∈B µi

subject to
∑

i∈B ρi = t
where m ∈ Z+

µi ∈ R

ρi ∈ 2Z

t ∈ R+.

(20)

In our notation, we usei ∈ {1, . . . ,m} to denote both the
index of a coin and the coin itself, andI to represent the
m items along with their weights{µi} and widths{ρi}. The
optimal solution, a function of total widtht and itemsI, is
denotedCC(I, t).

Note that we assume the solution exists but might not be
unique. In the case of distinct solutions, tie resolution for
minimizing arguments may for now be arbitrary or rule-based;
we clarify this in Subsection IV-D. A modified version of the
algorithm considers the case where a solution might not exist,
but this is not needed here. Because a solution exists, assuming
t > 0, t = ωtpow for some unique oddω ∈ Z and tpow ∈ 2Z.
(Note thattpow need not be an integer. Ift = 0, ω and tpow

are not defined.)

Algorithm variables
At any point in the algorithm, given nontrivialI and t, we
use the following definitions:

Remainder
tpow , the uniquex ∈ 2Z such

that t
x

is an odd integer

Minimum width
ρ∗ , mini∈I ρi (noteρ∗ ∈ 2Z)

Small width set
I∗ , {i | ρi = ρ∗}

(by definition, |I∗| ≥ 1)

“First” item
i∗ , arg mini∈I∗ µi

“Second” item
i∗∗ , arg mini∈I∗\{i∗} µi

(or null Λ if |I∗| = 1) .

Then the following is a recursive description of the algorithm:
Recursive Package-Merge Procedure[16]

Basis.t = 0: CC(I, t) is the empty set.
Case 1.ρ∗ = tpow andI 6= ∅: CC(I, t) = CC(I\{i∗}, t−

ρ∗) ∪ {i∗}.
Case 2a.ρ∗ < tpow, I 6= ∅, and |I∗| = 1: CC(I, t) =

CC(I\{i∗}, t).
Case 2b.ρ∗ < tpow, I 6= ∅, and |I∗| > 1: Create

i′, a new item with weightµi′ = µi∗ + µi∗∗ and width
ρi′ = ρi∗+ρi∗∗ = 2ρ∗. This new item is thus a combined item,
or package, formed by combining itemsi∗ and i∗∗. Let S′ =
CC(I\{i∗, i∗∗} ∪ {i′}, t) (the optimization of the packaged
version). If i′ ∈ S′, then CC(I, t) = S′\{i′} ∪ {i∗, i∗∗};
otherwise,CC(I, t) = S′.

This algorithm always returns an optimal solution, as fol-
lows:

Theorem 6:If an optimal solution to the Coin Collector’s
problem exists, the above recursive (Package-Merge) algo-
rithm will terminate with an optimal solution.

Proof: We show that the Package-Merge algorithm
produces an optimal solution via induction on the depth of the
recursion. The basis is trivially correct, and each inductive case
reduces the number of items by one. The inductive hypothesis
on t ≥ 0 and I 6= ∅ is that the algorithm is correct for
any problem instance that requires fewer recursive calls than
instance(I, t).

If I = ∅ and t 6= 0, or if ρ∗ > tpow > 0, then there is
no solution to the problem, contrary to our assumption. Thus
all feasible cases are covered by those given in the procedure.
Case 1 indicates that the solution must contain an odd number
of elements of widthρ∗. These must include the minimum
weight item inI∗, since otherwise we could substitute one
of the items with this “first” item and achieve improvement.
Case 2 indicates that the solution must contain an even number
of elements of widthρ∗. If this number is0, neitheri∗ nor i∗∗

is in the solution. If it is not, then they both are. Ifi∗∗ = Λ, the
number is0, and we have Case 2a. If not, we may “package”
the items, considering the replaced package as one item, as in
Case 2b. Thus the inductive hypothesis holds and the algorithm
is correct.

IEEE TRANSACTIONS ON INFORMATION THEORY 13

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

t = 0 = 02

t = 2 = 102

t = 3 = 112

µ = 1

µ = 1

µ = 1µ = 2µ = 4

µ = 5

µ = 5

µ = 5

µ = 6

µ = 6

ρ = 1ρ = 1ρ = 1

ρ = 2

ρ = 2ρ = 2

ρ = 2

∑
µ = 6

Fig. 3. A simple example of the Package-Merge algorithm

Fig. 3 presents a simple example of this algorithm at work,
finding minimum total weight items of total widtht = 3 (or, in
binary,112). In the figure, item width represents numeric width
and item area represents numeric weight. Initially, as shown
in the top row, the minimum weight item with widthρi∗ =
tpow = 1 is put into the solution set. Then, the remaining
minimum width items are packaged into a merged item of
width 2 (102). Finally, the minimum weight item/package with
width ρi∗ = tpow = 2 is added to complete the solution set,
which is now of weight6. The remaining packaged item is
left out in this case; when the algorithm is used for coding,
several items are usually left out of the optimal set.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[2] J. Abrahams, “Code and parse trees for lossless source encoding,”
Communications in Information and Systems, vol. 1, no. 2, pp. 113–
146, Apr. 2001.

[3] P. A. Humblet, “Source coding for communication concentrators,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1978.

[4] L. L. Campbell, “Definition of entropy bymeans of a coding problem,”
Z. Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 6, pp. 113–
118, 1966.

[5] B. McMillan, “Two inequalities implied by unique decipherability,” IRE
Trans. Inf. Theory, vol. IT-2, no. 4, pp. 115–116, Dec. 1956.

[6] L. L. Larmore, “Minimum delay codes,”SIAM J. Comput., vol. 18, no. 1,
pp. 82–94, Feb. 1989.

[7] P. A. Humblet, “Generalization of Huffman coding to minimize the
probability of buffer overflow,” IEEE Trans. Inf. Theory, vol. IT-27,
no. 2, pp. 230–232, Mar. 1981.

[8] J. N. Kapur, “Noiseless coding theorems for different measures of
entropy,” J. Comb., Inf. Syst. Sci., vol. 13, no. 3–4, pp. 114–126, 1989.

[9] C. Flores, “Encoding of bursty sourcesunder a delay criterion,” Ph.D.
dissertation, University of California,Berkeley,1983.

[10] T. C. Hu, D. J. Kleitman, and J. K. Tamaki, “Binary trees optimumunder
various criteria,”SIAM J. Appl. Math., vol. 37, no. 2, pp. 246–256, Apr.
1979.

[11] D. S. Parker, Jr., “Conditions for optimality of the Huffman algorithm,”
SIAM J. Comput., vol. 9, no. 3, pp. 470–489, Aug. 1980.

[12] M. Baer, “Rényi to Rényi — source coding under siege,” inProceedings
of the 2006 IEEE International Symposium on Information Theory, 2006,
to appear.

[13] A. Rényi, A Diary on Information Theory. New York, NY: John Wiley
& Sons Inc., 1987, original publication:Naplò az információelméletről,
Gondolat, Budapest, Hungary, 1976.

[14] M. R. Garey, “Optimal binary search trees with restricted maximal
depth,” SIAM J. Comput., vol. 3, no. 2, pp. 101–110, June 1974.

[15] A. Itai, “Optimal alphabetic trees,”SIAM J. Comput., vol. 5, no. 1, pp.
9–18, Mar. 1976.

[16] L. L. Larmore and D. S. Hirschberg, “A fast algorithm for optimal
length-limited Huffman codes,”J. ACM, vol. 37, no. 2, pp. 464–473,
Apr. 1990.

[17] J. Katajainen, A. Moffat, and A. Turpin, “A fast and space-economical
algorithm for length-limited coding,” inProceedings of the International
Symposium on Algorithms and Computation, Dec. 1995, p. 1221.

[18] M. Liddell and A. Moffat, “Incremental calculation of optimal length-
restricted codes,” inProceedings, IEEE Data Compression Conference,
Apr. 2002, pp. 182–191.

[19] A. Moffat, A. Turpin, and J. Katajainen, “Space-efficient construction
of optimal prefix codes,” inProceedings, IEEE Data Compression
Conference, Mar. 28–30, 1995, pp. 192–202.

[20] A. Turpin and A. Moffat, “Practical length-limited coding for large
alphabets,”The Computer Journal, vol. 38, no. 5, pp. 339–347, 1995.

[21] A. Aggerwal, B. Schieber, and T. Tokuyama, “Finding a minimum-
weight k-link path on graphs with the concave Monge property and
applications,”Discrete and Computational Geometry, vol. 12, pp. 263–
280, 1994.

[22] A. Turpin and A. Moffat, “Efficient implementation of the package-
merge paradigm for generating length-limited codes,” inProceedings of

IEEE TRANSACTIONS ON INFORMATION THEORY 14

Computing: The Australasian Theory Symposium, Jan. 29–30, 1996, pp.
187–195.

[23] B. Schieber, “Computing a minimum-weightk-link path in graphs with
the concave Monge property,”Journal of Algorithms, vol. 29, no. 2, pp.
204–222, Nov. 1998.

[24] A. Rényi, “Some fundamental questions of information theory,”Magyar
Tudományos Akad´emia III. Osztalyanak K¨ozlemenei, vol. 10, no. 1, pp.
251–282, 1960.

[25] J. Aczél, “On Shannon’s inequality, optimal coding, and characteriza-
tions of Shannon’s and R´enyi’s entropies,” inSymposia Mathematica,
vol. 15. New York, NY: Academic Press, 1973, pp. 153–179.

[26] T. Linder, V. Tarokh, and K. Zeger, “Existence of optimal prefix codes
for infinite source alphabets,”IEEE Trans. Inf. Theory, vol. IT-43, no. 6,
pp. 2026–2028, Nov. 1997.

[27] E. S. Schwartz, “An optimum encoding with minimum longest code and
total number of digits,”Inf. Contr., vol. 7, no. 1, pp. 37–44, Mar. 1964.

[28] M. B. Baer, “Twenty (or so) questions:D-ary bounded-length Huffman
coding,” preprint available from http://arxiv.org/abs/cs.IT/0602085.

[29] G. O. H. Katona and T. Nemetz, “Huffman codes and self-information,”
IEEE Trans. Inf. Theory, vol. IT-22, no. 3, pp. 337–340, May 1976.

[30] M. Buro, “On the maximum length of Huffman codes,”Inf. Processing
Letters, vol. 45, no. 5, pp. 219–223, Apr. 1993.

[31] Y. S. Abu-Mostafa and R. J. McEliece, “Maximal codeword lengths in
Huffman codes,”Computers & Mathematics with Applications, vol. 39,
no. 11, pp. 129–134, Oct. 2000.

[32] M. R. Garey and D. S. Johnson,Computers and Intractability. San
Francisco, CA: W. H. Freeman and Company,1979.

[33] U. Manber,Introduction to Algorithms. Reading, MA:Addison-Wesley,
1989.

[34] T. Cover and J. Thomas,Elements of Information Theory. New York,
NY: Wiley-Interscience, 1991.

[35] L. L. Larmore and T. M. Przytycka, “A fast algorithm for optimal height-
limited alphabetic binary-trees,”SIAM J. Comput., vol. 23, no. 6, pp.
1283–1312, Dec. 1994.

[36] J. van Leeuwen, “On the construction of Huffman trees,” inProc. 3rd
Int. Colloquium on Automata, Languages, and Programming, July 1976,
pp. 382–410.

[37] D. Baron and A. C. Singer, “On the cost of worst case coding length
constraints,”IEEE Trans. Inf. Theory, vol. IT-47, no. 7, pp. 3088–3090,
Nov. 2001.

[38] A. C. Blumer and R. J. McEliece, “The R´enyi redundancy of generalized
Huffman codes,”IEEE Trans. Inf. Theory, vol. IT-34, no. 5, pp. 1242–
1249, Sept. 1988.

[39] R. M. Capocelli and A. De Santis, “On the redundancy of optimal codes
with limited word length,” IEEE Trans. Inf. Theory, vol. IT-38, no. 2,
pp. 439–445, Mar. 1992.

[40] I. J. Taneja, “A short note on the redundancy of degreeα,” Inf. Sci.,
vol. 39, no. 2, pp. 211–216, Sept. 1986.

