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Source Coding for Quasiarithmetic Penalties
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Abstract—Whereas Huffman coding finds a prefix code min- defining length distributio. Finding values fol is sufficient
imizing mean codeword length for a given finite-item proba- to find a corresponding code.

bility distribution, quasiarithmetic or quasilinear coding prob- Huffman coding minimize$™ p;l;. Campbell’s formu-
ZEX v

lems have the goal of minimizing a generalized mean of theI . dd . ol g .
form (3, pip(li)), where 1, denotes the length of theith ation adds a continuous (strictly) monotonic increasiogt

codeword, p; denotes the corresponding probability, andy is a  functiong(l) : Ry — R,. The value to minimize is then
monotonically increasing cost function. Such problems, proposed

by Campbell, have a number of diverse applications. Several cost Lip.1 A -1 ol 1
functions are shown here to yield quasiarithmetic problems with (plp) = mep( ) ) - (1)
simple redundancy bounds in terms of a generalized entropy. 1€

A related property, also shown here, involves the existence of Campbell called (1) the “mean length for the cost function

optimal codes: For “well-behaved” cost functions, optimal codes ,,. . . .
always exist for (possibly infinite-alphabet) sources having finite ¢"; for brevity, we refer to it, or any value to minimize, as

generalized entropy. An algorithm is introduced for finding —thepenalty Penalties of the form (1) are callgdasiarithmetic
binary codes optimal for convex cost functions. This algorithm, or quasilinear we use the former term in order to avoid

which can be extended to other minimization utilities, can be confusion with the more common use of the latter term in
performed using quadratic time and linear space. This reduces cqnvex optimization theory.

the computational complexity of a problem involving minimum . .
delay in a queue, allows combinations of previously considered Note that such problems can be mathematically described

pr0b|ems to be Optimized‘ and great|y expands the set of pr0b|ems |f we make the natural COd'ng COI’]StraIntS eXpI'C't the |nteger

solvable in quadratic time and linear space. constraint/; € Z., and the Kraft (McMillan) inequality [5],
Index Terms— Huffman codes, generalized entropies, general- k(1) N ZD—zi <1

ized means, optimal prefix code, quasiarithmetic means, queue- T = -

ing. e

Given these constraints, examples fin (1) include a
I. INTRODUCTION quadratic cost function useful in minimizing delay due to

T is well known that Huffman coding [1] yields a prefixqueuelng and transmission,

code minimizing expected length for a known finite prob- o(x) = ax + fz? (2)
ability mass function. Less well known are the many variants
of this algorithm that have been proposed for related profr nonnegativex and;3 [6], and an exponential cost function
lems [2]. For example, in his doctoral dissertation, Humbl&gseful in minimizing probability of buffer overflowy(z) =
discussed two problems in queueing that have nonlinear terids for positive ¢ [3], [7]. These and other examples are
to minimize [3]. These problems, and many others, can Keviewed in the next section.
reduced to a certain family of generalizations of the Huffman Campbell noted certain properties for convex such as
problem introduced by Campbell in [4]. those examples above, and others for concaveStrictly

In all such source coding problems, a source emits symb&@ncavey penalize shorter codewords more harshly than the
drawn from the alphabet = {1,2,...,n}, wheren is an linear function and penalize longer codewords less harshly.
integer (or possibly infinity). Symbalhas probabilityy;, thus Conversely, strictly convex penalize longer codewords more
defining probability mass functiop. We assume without loss harshly than the linear function and penalize shorter codewords
of generality thatp; > 0 for everyi € X, and thatp; < p; less harshly. Convex need not yield penalty functions convex
for everyi > j (i,j € X). The source symbols are codedn !, althougho(L(p, 1, ¢)) is clearly convex irt if and only if
into codewords composed of symbols of theary alphabet #() is. Note that one can map decreasintp a corresponding
{0,1,..., D —1}, most often the binary alphabef), 1}. The increasing function(l) = ¢max — ¢(l) without changing
codeworde; corresponding to symbal has lengthl;, thus the value of L(p,l o) (e.g., for pmax = ©(0)). Thus the

restriction to increasing can be trivially relaxed.
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event is more likely. Clearly any (l,p) = pp(l) will be The quadratic moment was considered by Larmore in [6] as
differentially monotonic. This restriction on the generalizatioa special case of the quadratic problem (2), which is perhaps
will aid in finding algorithms for coding such cost functionsthe case of greatest relevance. Restating this problem in terms
which we denote ageneralized quasiarithmetigenalties: of f,
Definition 2: Let f(l,p) : R+ x [0,1] — Ry U{oc} be a 2 2
function nondecreasi(ng )ih Then o ) Flis pi) = pilow + fo”) (¢(z) = az + fz%) .
- This was solved with cubic space and time complexity as a
L(p,L, f) = Z fls, i) 3) step in solving a problem related to message delay. This larger
ex problem, treated first by Humblet [3] then Flores [9], was
is called ageneralized quasiarithmetjgenalty. Further, iff is  solved with anO(n®)-time O(n?)-space algorithm that can
convex inl, it is called ageneralized quasiarithmetic convexoe altered to become afi(n?)-time O(n?)-space algorithm
penalty. using methods in this paper.
As indicated, quasiarithmetic penalties — mapped with  Another quasiarithmetic penalty is the exponential penalty,
using f(L;, pi) = pie(l;) to L(p,l, f) = o(L(p,1,p)) — are that brought about by the cost function
differentially monotonic, and thus can be considered a special ) .
case of differentially monotonic generalized quasiarithmetic Flispi) = piD™ (p(z) = D*) )
penalties. for t > 0, D being the size of the output alphabet. This
In this paper, we seek properties of and algorithms fevas previously proposed by Campbell [4] and algorithmically
solving problems of this form, occasionally with some resolved as an extension of Huffman’s algorithm (and thus with
strictions (e.g., to convexity o). In the next section, we |inear time and space for sorted probability inputs) in [3], [7],
provide examples of the problem in question. In Section I, w@0], [11]. As previously indicated, in [3], [7] this is a step in
investigate Campbell’s quasiarithmetic penalties, expandingnimizing the probability of buffer overflow in a queueing
beyond Campbell's properties for a certain classgothat system. Thus the quasiarithmetic framework includes the two
we call subtranslatory This will extend properties — entropy queueing-related source coding problems discussed in [3].
bounds, existence of optimal codes — previously known only A related problem is that with the concave cost function
for linear ¢ and, in the case of entropy bounds, forof the " e
exponential formp(z) = D**. These properties pertain both flspi) = pi(1 = D) (¢(z) =1-D")
to finite and infinite input alphabets, and some are applicaljig¢ ¢ < 0, which has a similar solution [7]. This problem
beyond subtranslatory penalties. We then turn to algorithi§ates to a problem in [12] which is based on a scenario
for finding an optimal code for finite alphabets in Section IVhresented by &iyi in [13].
we start by presenting and extending an alternative to codeyhereas all of the above, being continuous;imnd linear
tree notation, nodeset notation, originally introduced in [6}n p,, are within the class of cases considered by Campbell,
Along with the Coin Collector’s problem, this notation canhe following convex problem is not, in that its range includes
aid in solving coding problems with generalized quasiarithinfinity. Suppose we want the best code possible with the
metic convex penalties. We explain, prove, and refine tl@nstraint that all codes must fit into a structure wigh

resulting algorithm, which isO(n?) time and O(n) space symbols. If our measure of the “best code” is linear, then the
when minimizing for a differentially monotonic generalizechppropriate penalty is

guasiarithmetic penalty; the algorithm can be extended to other

penalties with a like or slightly greater complexity. This is an f(li,pi) = { Pilis 13 = fmax (%)
improvement, for example, on a result of Larmore, who in 20, i > lmax

[6] presented arO(n?*)-time O(n?)-space algorithm for cost for some fixed,,.« > [logpn]. This describes the length-
function (2) in order to optimize a more complicated penaltymited linear penalty, an objective solved by several algo-
related to communications delay. Our result thus improveghms; see, e.g., [14]-[23] or [2] for a comprehensive list.
overall performance for the quadratic problem and offers amost notable among these are the efficient Package-Merge
efficient solution for the more general convex quasiarithmetiggorithm [16] for D = 2 and a less efficient dynamic pro-

problem. Conclusions are presented in Section V. gramming approach fab > 2 [15]. In this paper the Package-
Merge approach is extended to a generalized quasiarithmetic
Il. EXAMPLES convex coding algorithm.

Note that if the measure of a “best code” is nonlinear,
combination of penalties should be used where length is
limited. For example, if we wish to minimize the probability
fls,ps) = pil? (p(z) = z) of buffer overflow in a queueing system with a limited length

constraint, we should combine (4) and (5):
for a > 1, the moment penalty; see, e.g., [8, pp. 121

122]. Although efficient solutions have been given for= 1 fls,ps) = { piD"s 1 < (6)
(the Huffman case) and. = 2 (the quadratic moment), 0, li > Imax.

no polynomial-time algorithms have been proposed for thhis problem can be solved via dynamic programming in a
general case. manner similar to [14], but this approach tak@$n2l,,..)

The additive convex coding problem considered here is quiée
broad. Examples include
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time andQ(n?) space forD = 2 and greater complexity for This is a slight abuse ofirg min notation sinceL* could
D > 2 [15]. Our approach improves on this considerably. have multiple corresponding optimal length distributioig.(

In addition to the above problems with previously knowtlowever, this is not a problem, as any such value will suffice.
applications — and penalties which result from combininyote too thatl* satisfies the Kraft inequality and the integer
these problems — one might want to solve for a differembnstraint, and thuﬂ(p,li,@ > L*.
utility function in order to find a compromise among these We obtain bounds for the optimal solution by noting that,
applications or another trade-off of codeword lengths. Thesmcey is monotonically increasing,
functions need not be like Campbell’'s in that they need not . ; .
be linear inp; for example, consider ¥ (Zﬂ’i%ﬁ(li)) < e (ipie(l))

ftpi) = (1= p) ™" et (Ximelt)) ©)

Although the author knows of no use for this particular cost o (ipiel )
function, it is notable as corresponding to one of the simpleBhese bounds are similar to Shannon redundancy bounds for

IN

convex-cost penalties of the form (3). Huffman coding. In the linear/Shannon casé:b,: —logypi,
so the last expression igipi(l;f +1) =1+ Zipilj =
I1l. PROPERTIES 1+ H(p), where H(p) is the Shannon entropy, sk (p) <
>, pilf <1+ H(p). These Shannon bounds can be extended
A. Bounds and the Subtranslatory Property to quasiarithmetic problems by first defining-entropy as
Campbell’s quasiarithmetic penalty formulation can be réollows:
stated as follows: Definition 3: Generalized entropgr ¢-entropyis
Given p=(p1-spn); pi >0, H(p,p) % inf L(ply) (10)
Zipi =1 s, pli<i,
. . . I;ERy
convex, monotonically increasing
0:Ry =Ry 7) where here infimum is used because this definition applies to
Minimize gy L(p,L,¢) = >, pie(ls) codes with infinite, as well as finite, input alphabets [4].
subject to 27k <1 Campbell defined this as a generalized entropy [4]; we go
li € Zy. further, by asking which cost functiong, have the following
) i o é)roperty:
In the case of lineap, the integer constraint is often remove
to obtain bounds related to entropy, as we do in the nonlinear H(p,p) < L(p,1",p) <1+ H(p,¢). (11)
case: These bounds exist for the exponential case (4) with
Given P=(p1,---:pn), Pi >0, H(p, ) = Hu(p), wherea £ (1+1t)~', and H,(p) denotes
d.ipi=1; Rényi a-entropy [24]. The bounds extend to exponential costs
convex, monotonically increasing because they share with the linear costs (and only those costs)
p: Ry — Ry (8) a property known as thé&ranslatory property, described by
Minimize gy L(p, L, ¢) = >, piv(li) Aczél [25], among others:
subjectto Y7, 27 <1 Definition 4: A cost functiony (and its associated penalty)
li € Ry. is translatoryif, for any I € R", probability mass functiomp,

. . and Ry,
Note that, givenp and ¢, LT, the minimum for the relaxed ¢ERy

(real-valued) problem (8), will necessarily be less than or L(p,l+c¢,¢)=L(p,l,p)+c
equal toL*, the minimum for the original (integer-constrained) . )
problem (7). Letl' and I* be corresponding minimizing Wherel + c denotes adding to eachi; in I [25].

values for the relaxed and constrained problems, respectively’Vé Proaden the collection of penalty functions satisfying

Restating, and adding a fifth definition: such bounds by replacing the translatory equality with an
' inequality, introducing the concept ofsabtranslatorypenalty:

L & min  L(p,l, ) Definition 5: A cost functiony (and its associated penalty)
Ziﬁe’gflv is subtranslatoryif, for any I € R”}, probability mass function
' ,andc € Ry,
I* £ arg min L(p,l, ) p ¢E Rt

Zip st L(p,1+c,¢) < L(p,L,9) +c.
e For such a penalty, (11) still holds.

oA ; . . .
L= Zgllfilq L(p,L,¢) If © obeys certain regularity requirements, then we can
LERy introduce a necessary and sufficient condition for it to be
1" 2 argmin L(p,L, ) sub'FransIatory. Suppose that the invertible functjnnR+ -
s, p-li<, R+ is real analytic over a relevant compact interval. We might
li€Ry choose this interval to be, for examplé,= [§,1/§] for some

N (AR TR )] 6 € (0,1). (Let § — 0 to show the following argument is
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valid over allR,.) We assume>~! is also real analytic (with Takinge — 0,
respect to intervap(.A)). Thus all derivatives of the function

and its inverse are bounded. 1 1
Theorem 1:Given monotonically increasing real analytic  * (Zp’(’o(l” +C)> sty szw(lq,)
cost function ¢ and its real analytic inverseo—!, ¢ is ’ ’

subtranslatory if and only if, for all positivkand all positive Thus, the fact of (12) is sufficient to know that the penalty is
p summing tol, subtranslatory.

To prove the converse, supposé  p;¢'(l;) >
ZWP/(I??) <o [t pr(li) 12) ¢ (¢ (X piw(ls))) for some validl and p. Because
2 p @ is analytic, continuity implies that there exi&§ > 0 and

wherey’ is the derivative ofp. €0 > 0 such that

Proof: First note thaty, , ¢, and (o= 1) are all

positive over their domain. Thus inequality (12) is equivalent Zpﬁp (1+8p) - < <Z pi(l ))
to

<Zpi90'(li)> () <Zp¢<ﬂ(li)> <1 (13) foralll € [l,l+ ¢). The chain of inequalities above reverse

i i in this range with the additional multiplicative constant. Thus

We show that, when (13) is true everywhegeis subtrans- (14) becomes
latory, and then we show the converse. ket 0. Using power

expansions of the form (Zp o(l ) (1+dp)e
g(@) +eg'(x) = g(x + €) £ O(?)
onp andp1, <p! (ZP%PUQ + 6)) +0(e)
! <Zpi¢(li)> +e for I’ € [I,1+ ), and (15) becomes, for any< (0, ),

¥
2ot (Zpiso(li)> ot (me(lﬁd)
(pr'(lz')> (7t <Zpi¢(li)> > (1+do)c+ ¢! (ZPL > (e)
© o (Z pip(ls) + € Z pid' (1) | £0(e?) " which, takinge — 0, similarly leads to
Qo <Zpl li+¢€) £O0(e )) +O(e?) o (Zpﬂﬂ(li + C))
@, (ZW’ +E>:|:O(€2). > (14 68)c+ ¢~ 1(21& )

Step (a) is due to (13), step (b) due to the power expansion > -1
: + il
on ¢!, step (c) due to the power expansion gnand step cre Zp olli)

(d) due to the power expansion @' (where the bounded _ .
derivative ofo~! allows for the asymptotic term to be brough&nd thus the subtranslatory property fails and the converse is

outside the function). proved. u
Next, evoke the above inequalitye times: Therefore, fory satisfying (12), we have the bounds of
(11) for the optimum solution. Note that the right-hand side
o (mep(li + C)> of (12) may also be writtep’ (L(p, I, )); thus (12) indicates
, that the average derivative gf at the codeword length values

is at most the derivative op at the value of the penalty for
<eto! (Z pip(li + ¢ — 6)) +0(%) those length values.
i The linear and exponential penalties satisfy these equivalent
inequalities with equality. Another family of cost functions that

Se { J ZPL ) be—e [CJ +0(e) satisfies t.he subtranslatory propertydsl;) = I¢ for fixed
€ a > 1, which corresponds to

<c+ i ) 1/a
. <Zp(p ) L(p,1,¢) (Zm”) :

(15)

IN
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Proving this involves noting that Lyapunov’s inequality foB. Existence of an Optimal Code

moments of a random variable yields Because all costs are positive, the redundancy bounds that
. L are a result of a subtranslatory penalty extend to infinite

I a1 " B alphabet codes in a straightforward manner. These bounds
Zpili < Zpili thus show that a code with finite penalty exists if and only

if the generalized entropy is finite, a property we extend to
nonsubtranslatory penalties in the next subsection. However,
one must be careful regarding the meaning of an “optimal
et code” when there are an infinite number of possible codes

a- (Z pilf’_1> <a- (Z pilf’_1> satisfying the Kraft inequality with equality. Must there exist
P p an optimal code, or can there be an infinite sequence of

codes of decreasing penalty without a code achieving the limit

which, because’(z) = ax®1, is penalty value?

Fortunately, the answer is the former, as the existence results

which leads to

, P of Linder, Tarokh, and Zeger in [26] can be extended to
szwp () =" | sz«p(li) quasiarithmetic penalties. Consider continuous strictly mono-
! ! tonic ¢ : R, — R, (as proposed by Campbell) and =
the inequality we desire. (p1,p2, . ..) such that
Another subtranslatory penalty is the quadratic quasiarith- R (S
metic penalty of (2), in which Li(p,p)= inf ¢ > pie(ls) (16)
D li<a, ;
, i ler” =1
p(z) = ax + Bx is finite. Consider, for an arbitrary € Z., optimizing for ¢
with weights
for a, 3 > 0. This has already been shown f8r= 0; when g
6>0, p(n)é(pl;an"'apnaOaO7"')'
, B 5 (We call the entries to this distribution “weights” because they
¢@) = a+26e do not necessarily add up th) Denote the optimal code a
1) ( @ )2 r o« truncated codeone with codeword lengths
p(x) = 23] 7 53
26 g2 12 gm0 o o, )
2 .
o o o Thus, for conveniencel,gj) = oo for i > j. These lengths
L l = — i | =1; 2| - —. ! . . . .
(.1 ¢) (26) * Z_:p (ﬂ + 1) 23 are also optimal for(}>"_, p;)~* - p("), the distribution of
normalized weights.
distributionsi™ 1 1®®) . convergesto an infinite prefix
2 code with codeword lengthis= {i1, l», ...} if, for eachi, the
> opily > (Z pﬂ») ith length in each distribution in the sequence is eventually
i i (i.e., if each sequence convergesi {p
2 Theorem 2:Given quasiarithmetic increasingandp such
o® +48> pi(ali +BI7) > (Z pilo+ 2,6’11-)) that L*(p, ) is finite, the following hold:
i i 1) There exists a sequence of truncated codeword lengths
that converges to optimal codeword lengths forthus
2 (ol 2 _ _
\/a +4ﬁzi:pz(all +OE) 2 ;p’(a +26L) the infimum is achievable.
2) Any optimal code fop must satisfy the Kraft inequality
¢ (Lp,Le) = > pig ). with equality.
i Proof: Because here we are concerned only with cases

in which the first length is at least we may restrict ourselves

We thus have an important property that holds for several ca €S he domainip—(pr(1)), 50). Recall

of interest.

One might be tempted to conclude that every— or every N . (e
convex and/or concave — is subtranslatory. However, this L*(p.¢) = E;{liq v <Zpi@<li)> < oo
is easily disproved. Consider convexz) = =3 + 112. Using ‘ez =t

Cardano's formula, it is easily seen that (12) does not holdThen there exists near-optimél = U, 15,1,...} € 2%

for p = (3,2) andl = (3,1). The subtranslatory test alsog,ch that

fails for p(z) = +/x. Thus we must test any given penalty o o

for the subtranslatory property in order to use the redundancy ,-1 (Z pw(%)) < L*(p,¢) +1 and Z D l<1
i=1

bounds. i=1
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and thus, for any integert, Due to the optimality of each™, for all m > j:
n n k R k
! <Zp¢<p(l;)> <L'(pg)+landd DM <1, Sopiel) = > pip(™™)
i=1 i=1 i=1 i=1
So, using this to approximate the behavior of a minimizing < szso(l(nm))
1™, we have i=1
' (Zpisoai"))) < ! (Zm(z;)) =1
=1 =1
< L*(p,p) +1 = ZZW(A
yielding an upper bound on terms and, takingk — oo, Y, pi¢ ( D) < X, pie(\), leading
directly to ™! (X, pig(li)) < ¢! (X, piv(\)) and the
pie(y™) ZPM optimality of C.
. Suppose the Kraft inequality is not satisfied with equality
< SD(L (p,p) +1) for optimal codeword lengths = {1, l5,...}. We can then
, o produce a strlctly superior code. There i & Z such that
for all j. This implies D=+ 437 D~k < 1. Consider coddly, I, ... lp_1,ls —
. 1, I 7l ). This code satisfies the Kraft inequality and
o _ o1 (P (Pp) +1) N - o lﬂ Y
;< ” as penalty ! (52, o) + pr(o(lh — 1) = o(2))) <

Y pip (1) Thusl is not optimal. Therefore the Kraft

Thus, for anyi € Z,, the sequencégl),lf),ll(g), ... is |nequal|ty must be satisfied with equality for optimal infinite
bounded for all'”) + oo, and thus has a finite set of value$odes. u
(including oc). It is shown in [26] that this suffices for the Note that this theorem holds not just for subtranslatory
desired convergence, but for completeness a slightly altef@nalties, but for any quasiarithmetic penalty.
proof follows.

Because each sequendé" !”,1!®) ... has a finite
set of values, every infinite mdexed subsequence for a
given i has a convergent subsequence. An inductive ar-Recall the definition of (10),

C. Finiteness of Penalty for an Optimal Code

gument implies that, for anyk, there exists a subse-

quence indexed by such thatl§"’f>,z§"’5),z§"<’?>,... con- H(p,p) = inf <Zplgp >
verges for alli < k&, where zg"@,zg"?),zg”@),... is a SR,

subsequence otE”’f/),ZE”S/),ZE"g/),... for ¥ < k. Code-

1 2 3 for ¥ - R-‘r - R-‘r
V\(/0r§j I?ng);th( distributiong™),1"2) 1) . (which we call  Theorem 3:If H(p, p) is finite and eithery is subtransla-
1m0 q(m2) q(na) -y thus convergeto the codeword | lengths %ry or p(z + 1) = O(p(z)) (which includes all concave and

an infinite codeC’ with codeword lengthg = {i1,12,15,...}. g polynomial ¢), then the coding problem of (16),
Clearly each codeword length distribution satisfies the Kraft

inequality. The limit does as well then; were it exceeded, we . ) .
could find#' such that L*(p,p)= inf o

ZD*E >1 has a minimizing* resulting in a finite value fol.*(p, ¢).
j Proof: If ¢ is subtranslatory, thed*(p,¢) < 1 +
H(p,p) < co. If p(z+1) = O(p(z)), then there are,, 5 > 0

and thusn’ such that such thato(z + 1) < a + B¢(z) for all z. Then
Z DU 51 o ! (Zpigp(li + 1))
=1 Q
. . . —1
causing a contradiction. < (sz‘(a + 5@(11')))
We now show that”' is optimal. Let{\;, A2, A5...} be i

the codeword lengths of an arbitrary prefix code. For every —o ' atp sz«p(li) )
there is aj > k such thatl; = z§"m> foranyi < k if m > j.
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So . B. The Coin Collector’'s Problem
L*(p, »)
< L(p,l"+1,¢)
<o a+ Be (H(p,¢)))
< 00

Let 27 denote the set of all integer powers of two. The
Coin Collector’s problem of size: considersn “coins” with
width p; € 2%; one can think of width as coin face value,
e.g.,p; = 1 for a quarter dollar (25 cents). Each coin also has
and the infimum, which we know to also be a minimum, isveight ; € R. The final problem parameter is total width,
finite. B denotedt. The problem is then:

Minimize (pcqi,.myy  Diep Hi 17)

IV. ALGORITHMS subject to S =t

A. Nodeset Notation ) ) ] )
We thus wish to choose coins with total widthsuch that

We now examine algorithms for finding minimum per""‘mfheir total weight is as small as possible. This problem is

codes for convex cases with finite alphabets. We first pres%ﬁtinput—restricted variant of the knapsack problem, which, in
a r.lotatlon.for.codes based. on an approach of Larmore E\% neral, is NP-hard; no polynomial-time algorithms are known
This notation is an alt((jer_natl_\l/lebto thhe bwe!l l;nown Clode_tr: r such NP-hard problems [32], [33]. However, given sorted
hotation, e.g., [27], an It wi D€ the basis Tor an algorit puts, a linear-time solution to (17) was proposed in [16]. The
to solve the generalized quasiarithmetic (and thus Campbe Igorithm in question is called tHeackage-Merge algorithm

quasiarithmetic) convex coding problem. In the Appendix, we illustrate and prove a slightly simplified

In the literature nodeset notation is generally used for binary ..o of the Package-Merge algorithm. This algorithm al-
alphabets, not for general alphabet coding. Although we brie Wws us to solve the generalized quasiarithmetic convex coding

sketch how to adapt this technique to general output alphal Edblem (3). When we use this algorithm, we Btepresent

coding at.the end Qf Subsection IV-E, an apprqach fulbe 1, items along with their weights and widths. The optimal
explained in [28], until then we concentrate on the binary Ca3G|ution to the problem is a function of total widttand items

(D=2). Z. We denote this solution aSC(Z,t) (read, “the [optimal
The key idea:Each node(i,!) represents both the share_ ! o (Z,1) ( ’ [optimall

of the penaltyi( L. ) (weight) and the share of the Kraﬂcoin collection forZ andt”). Note that, due to ties, this need
p; % not be unique, but we assume that one of the optimal solutions
sum«(l) (width) assumed for théh bit of theith codeword. aue, P

. . . . ) is chosen; at the end of Subsection IV-D, we discuss which
If we show that total weight is an increasing function of th%f the optimal solutions is best to choose

penalty and show a one-to-one correspondence between opti-
mal nodesets and optimal codes, we can reduce the problem to
an efficiently solvable problem, the Coin Collector’s problenfz. A General Algorithm

In Order to dO thiS, we fiI’St assume bounds on the maXimUmWe now forma”ze the reduction from the genera”zed
codeword length of possible solutions, e.g., the maximuguasiarithmetic convex coding problem to the Coin Collector’s
unary codeword length af — 1. Alternatively, bounds might problem.
be explicit in the definition of the problem. Consider for \we assert that any optimal solutiovi of the Coin Collec-
example the length-limited coding problems of (5) and (6)gr's problem fort = n — 1 on coinsZ = I is a nodeset
upper bounded byi.x. A third possibility is that maximum for an optimal solution of the coding problem. This yields a

length is implicit in some property of the set of optimakyitable method for solving generalized quasiarithmetic convex
solutions [29]-[31]; we explore this in Subsection IV-E. penalties.

We therefore restrict ourselves to codes witltodewords, T show this reduction, first defing V') for any N = (l):
none of which has greater length thép.., wherel.x €

[[logy n],n — 1]. With this we now introduce thenodeset p(N) = Z p(i,1)

notation for binary coding: (i,)eN
Definition 6: A nodeis an ordered pair of integer@, () n I

such thati € {1,...,n} andl € {1,...,lna}. Call the = ) ) 2

set of all nlnax possible noded. Usually I is arranged in i=1 I=1

a grid; see example in Fig. 1. The set of nodesnodeset n L

corresponding to item (assigned codeword with lengthl;) = (1 -2 )

is the set of the first; nodes of columni, that is,n; (i) £ i=1 .

{G, ) | 7 =1, 1 € {1,...,1;}}. The nodeset corresponding - 2241

to length distributiort is n(1) £ |J, m(i); this corresponds to p

a set ofn codewords, a code. We say a nodgl) haswidth E——

p(i,1) £ 27 andweight (i, 1) = f(I,p;) — f(I—1,p;), as in

the example in Fig. 1. Because the Kraft inequality is(l) < 1, p(N) must lie in

If I has a subsefV that is a valid nodeset, then it is[n—1,n) for prefix codes. The Kraft inequality is satisfied with
straightforward to find the corresponding length distributioaquality at the left end of this interval. Optimal binary codes
and thus a code. We can find an optimal valid nodeset usingve this equality satisfied, since a strict inequality implies that
the Coin Collector’s problem. the longest codeword length can be shortened by one, strictly
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[ (level)
1
2
p(2,3) =5 p(3,3) = § p(4,3) = &
8 w(2,3) = 5p2 w(3,3) = 5p3 p(4,3) = 5ps
1 2 3 4
1 (item)

Fig. 1. The set of node$ with widths {p(i,1)} and weights{y(3,1)} for f(l;,p;) = pil2, n = 4, lmax = 3

decreasing the penalty without violating the inequality. Thufe smallest contribution to the width &f andr as the portion
the optimal solution hag(N) =n — 1. of the binary expansion of the width d¥ to the right of2—*.
Also define: Then clearlyr must be an integer multiple of*. If » = p*,
R = {j*} is a solution. Otherwise leN’ = N\{j*} (so
My(1, p) f,p)— f(l—1,p) IN’| =n — 1) and letR’ be the subset obtained from solving
LO (pa f)

(1>

= the lemma for sefV’ of width r — p*. ThenR = R’ U {j*}.
Z f(ovpi) | |
- ) We are now able to prove the main theorem:

Z p(is1)- Theorem 4:SupposeV is a solution of the Coin Collector’s
(@hen problem fort = p(N) = n — 1 with p(i,1) and u(i,1)
Note that as defined above forf(l,p) convex ini. Then there is

. a corresponding” such thatN = (") and u(N) =
pN) = ) i) wing L(p.1. f) ~ Lo(p. f)-
@GheN Proof: By monotonicity of the penalty function, any op-
LI timal solution satisfies the Kraft inequality with equality. Thus
- ZZMf(lvpi) all optimal length distribution nodesets haw@;(1)) = n — 1.
izl =1 " SupposeV is a solution to the Coin Collector’s problem but is
_ Z Fli,pi) — £(0,p2) not avglid nodeset of a length distribution. Then there exists an
e e (i,1) with [ > 1 such that(i,l) € N and(i,l —1) € I\N. Let
— ipl ) — Lo(p, f) R = NU{(i,1-1)}\{(i,1)}. Thenp(R') = n—1+2"" and,
Y e due to convexityu(R') < p(N). Thus, using Lemma 1 with
Lo(p, f) is a constant given fixed penalty and probabilitf = 0, « =n — 1, andr = 2"/, there exists ar C R’ such
distribution. Thus, if the optimal nodeset corresponds to a vafi@at p(R) = 27" and u(R'\R) < pu(R’) < p(N). Since we
code, solving the Coin Collector’s problem solves this codingssumedV to be an optimal solution of the Coin Collector’s
problem. To prove the reduction, we need to prove that tioblem, this is a contradiction, and thus any optimal solution
optimal nodeset indeed corresponds to a valid code. We begfnthe Coin Collector’s problem corresponds to an optimal
with the following lemma: length distribution. u
Lemma 1:Suppose thailV is a nodeset of widthr2=% + r Note that the generality of this algorithm makes it trivially
wherek andz are integers an@ < r < 27%. Then N has a extensible to problems of the for)n; f:(l;, p;) for n different
subsetR with width r. [16] functionsf;. This might be applicable if we desire a nonlinear
Proof: We use induction on the cardinality of the setweighting for codewords — such as an additional utility
The base casgV| = 1 is trivial since thenz = 0. Assume weight — in addition to and possibly independent of codeword
the lemma holds for allN| < n, and supposéN| = n. Let length and probability.
p* =min; g p; and j* = arg min, 5 p;. We can se@” as Because the Coin Collector’s problem is linear in time and

(1>

lI>

(V)
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ﬁ;?:;m.type — O(:L'rlr(')eg ) O(Zﬁigen) Practi_cal cos_t functions will, given a probability distribu_tion
space-optimized O(nlogn) O(n) for nonincreasingp;, generally have at least one optimal
not flat, d.m. O(n?) O(n?) code of monotonically nondecreasing length. Differentially
opace-opimized - (%Zgz)n) = (%:g)n) monotonicity is a sufficient condition for this, and we can
not’flat, ot dm. O(nZlogn) O improve upon the aIgpnthm by |nS|sjc|ng 'Fhat the pr_ot?lem be
differentially monotonic and all entrieg; in p be distinct;
TABLE | the latter condition we later relax. The resulting algorithm
COMPLEXITY FOR VARIOUS TYPES OF INPUTD.M. = DIFFERENTALLY uses only linear space and quadratic time. First we need a
MONOTONIC) definition:
Definition 8: A monotonic nodeset, N, is one with the
following properties:
space, the overall algorithm finds an optimal cod®im/,,.x) (i,)eN=(i+1,])e N fori<n (18)
time and space for any “well-behaved?l;, p;), that is, any (L) eEN=(i,l—1)eN forl>1. (19)

f of the form specified for which same-width inputs would
automatically be presorted by weight for the Coin Collector'shis definition is equivalent to that given in [16].

problem. An example of a monotonic nodeset is the set of nodes
The complexity of the algorithm in terms of alone enclosed by the dashed line in Fig. 2. Note that a nodeset is

depends on the structure of bothand p, because, if we monotonic only if it corresponds to a length distributiowith

can upper-bound the maximum length codeword, we C@thgths sorted in nondecreasing order.

run the Package-Merge algorithm with fewer input nodes. In | emyma 2:1f a problem is differentially monotonic and

addition, if f is not “well-behaved,” input to the Packagegnotonically increasing and convex in edghand ifp has no

Merge algorithm might need to be sorted. . repeated values, then any optimal solutign= CC(I,n —1)
To quantify these behaviors, we introduce one definition and 1 snotonic.

recall another:

= , ) Proof: The second monotonic property (19) was proved
Definition 7: A (coding) problem space is calledlat class

. . e L, for optimal nodesets in Theorem 4, and the first is now proved
if there exists a constant upper boumduch that <U  with a simple exchange argument, as in [34, pp. 97-98].

- logn
for any solutioni. . . Suppose we have optim& that violates the first property
For example, tlhe_ space of linear Huffman coding problemsg) "then there exist unequaland j such thaty; < p; and
with all p; > 5 is a flat class. (This may be shown using. ;o optimal codeword lengths (N = 5()). Consider

[30]) . ) _ _ . I' with lengths for symbols and;j interchanged. Then
Recall Definition 1 given in Section I: A cost function

f(1,p) and its associated penalfyaredifferentially monotonic Lp,V, f) - L(p,1, f)

or d.m.if, for every ! > 1, wheneverf(l — 1,p;) is finite and =30 fWe o) — > f (ks pr)

pi > pj, f(Lpi) = f(L=1,pi) > f(I,p;) — f(I —1,p;). This = (fUsp5) = (L ps)) = (F (L pi) = f(li pi)

implies thatf is continuous irp at all but a countable number — le (Ms(1,p;) — Ms(l, p;))

of points. Without loss of generality, we consider only cases <0 =l Y o

in which it is continuous everywhere.

If f(I,p) is differentially monotonic, then there is nowhere we recall thad/(l,p) = f(I,p) — f(I — 1,p) and the
need to sort the input nodes for the algorithm. Otherwisgnal inequality is due to differential monotonicity. However,
sorting occurs 0Ny rows with O(nlogn) on each row, thijs implies that is not an optimal code, and thus we cannot
O(nlmax logn) total. Also, if the problem space is a flat classhave an optimal nodeset without monotonicity unless values
Imax i O(logn); itis O(n) in general. Thus time complexity in p are repeated. m
for this solution ranges frond(nlogn) to O(n*logn) With  Taking advantage of monotonicity to trade off a constant
space requiremeni?(n log n) to O(n?); see Table | for details. factor of time for drastically reduced space complexity has
As indicated in the table, space complexity can be reducedgBen done in [6] for the case of the length-limited (linear)

differentially monotonic instances. penalty (5). We now extend this to all convex differentially
_ _ monotonic cases.
D. A Linear-Space Algorithm Note that the total width of items that are each less than

Note that the length distribution returned by the algorithrar equal to widthp is less than2np. Thus, when we are
need not have the property thiat< /; wheneveri < j. For processing items and packages of widthfewer than2n
example, ifp; = p;, we are guaranteed no particular inequalitpackages are kept in memory. The key idea in reducing space
relation betweer; andi; since we did not specify a methodcomplexity is to keep only four attributes of each package in
for breaking ties. Also, even if alp; were distinct, there memory instead of the full contents. In this manner, we use
are cost functions for which we would expect the inequalitynear space while retaining enough information to reconstruct
relation reversed from the linear case. An example of thiBe optimal nodeset in algorithmic postprocessing.
is f(li,pi) = p;12li, although this represents no practical Definel,iq = L%(lmaXJrl)j. Package attributes allow us to
problem that the author is aware of. divide the problem into two subproblems with total complexity
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that is at most half that of the original problem. For each The overall complexity isD(n) space and)(nimax) time

packageS, we retain the following attributes: — O(nlogn) considering only flat classe§)(n?) in general,
1) u(S) = X nes 1 1) as in Table I.
2) p(S) & > ’z) g (i, 1) However, the assumption of distingts puts an undesirable
il)€ ’

3) u(S) 2 |9 N Loud] restriction on our input. In their origingl _(Iinear) algorithm,
) $(S) LY m (i 0) Larmore and Hirschberg suggest modifying the probabilities
(i,))esnty P slightly to make them distinct [16], but this is unnecessarily
wherely; £ {(i,1) | I > lmia} and Imia = {(i,1) | I =Imia}. inelegant, as the resulting algorithm has the drawbacks of
We also defindli, £ {(i,1) | I < lmia}- possibly being slightly nonoptimal and being nondeterministic;
This retains enough information to complete the “first runthat is, different implementations of the algorithm could result
of the algorithm withO(n) space. The result will be thein the same input yielding different outputs. A deterministic
package attributes for the optimal nodesét Thus, at the variant of this approach could involve modifications by multi-
end of this first run, we know the value far = v(N), and ples of a suitably small variable> 0 to make identical values
we can considefV as the disjoint union of four sets, showndistinct. In [35], another method of tie-breaking is presented

in Fig. 2: for alphabetic length-limited codes. Here, we present a simpler
1) A = nodes inN N I, with indices in[1,n — m)] alternative analogous to this approach, one which is both
2) B = nodes inN N I, with indices in[n — m + 1,7) deterministic and applicable to all differentially monotonic
3) C = nodes inN N Iniq instances.
4) D = nodes inN N I;. Recall thatp is a nonincreasing vector. Thus items of a

Due to monotonicity ofN, it is trivial that C' = [n — m + given width are sorted for use in the Package-Merge algorithm;
1,n] % {lmia} and B = [n’_ m 4+ 1,1n] % [1, lmiq — 1]. Note use this order for ties. For example, if we use the nodes in
then thatp(C) = m2-ta and p(B) = m[1 — 2-(ma-1], Fig. 1 —mn =4, f(l,p) = pI> — with probability p =

Thus we need merely to recompute which nodes aré and (0.5,0.2,0.2,0.1), then nodeg4, 3) and (3, 3) are the first to
in D. be paired, the tie betwee2, 3) and (3,3) broken by order.

BecauseD is a subset offy;, p(D) = ¥(N) and p(A) = Thps, at a.ny.step, all identical-width items in one pa_ckage have
p(N)— p(B) — p(C) — p(D). Given their respective widths} gdjacerjt indices. Recall that packa_ges of items W|II_ be either
is a minimal weight subset df, 7 — ] x [1, lmiq — 1] and D in the final nodeset or absent from it as gwhole.' Th|§ scheme
is a minimal weight subset df. —m + 1, 72] % [Imia + 1, linas]- then prevents any of the nonmonotonicity that identjeéd

The nodes at each level df and D may be found by recursive might bring about. , , L
calls to the algorithm. In doing so, we use orfln) space. In order to ensure that the algorithm is fully deterministic —
Time complexity, however, remains the same; we replace c)Wgeth'er or not the Ilnear-space \(er3|on is used — the manner
run of an algorithm omi,... nodes with a series of runs, first" Which packages and single items are merged must also
one onnlu.. Nodes, then two on an average of at m}ﬁlmax be taken into account. We choose to merge nonmerged items
nodes each. then four Oﬁ;nlma and so forth. Formalizing before merged items in the case of ties, in a similar manner
this analysié: ’ to the two-queue bottom-merge method of Huffman coding
Theorem 5:The above recursive algorithm for generalizel?7l: [36]- Thus, in our example, the nodg, 2) is chosen
quasiarithmetic convex coding héXni,.x) time complexity. whereas the pa_ckage of itenfs, 3) and (3,3) is not. This
[16] leads to the optimal length vectdr= (2,2, 2, 2), rather than
Proof: As indicated, this recurrence relation is considere,ld: (1,2,3,3) orl = (1’3’2’3>.’ which are aIsp optlma.\I.IAs
and proved in [16, pp. 472—473], but we analyze it here iR bottom—merge Huffman coding, the code with the minimum
completeness. To find time complexity, set up the foIIowin[[jf‘\Verse Iexwo_grgphlcal order among optimal codes_ IS the one
recurrence relation: Lef'(n, ) be the worst case time to finduIrOd,fjce?j' Th|s 1S allfo the_ case if W? Ese tr|1e po:,ltlgn_ of the
the minimal weight subset dfi, n| x [1,!] (of a given width), ast” node in a package (in terms of the valuerdf+ d) in

assuming the subset is monotonic. Then there exist const ergo choose thohse V{\'_thh"?wef vg}luei, asin [3b5]. Hov_ve\I/er,
c1 and ¢, such that, if we defind 2 1,4 — 1 < L%J and the above approach, which is easily shown to be equivalent
via induction, eliminates the need for keeping track of the

[21-1-1< |£], and we let an adversary choose th?naximum value oful + i for each package
correspondingh + 1 = n, e P ge.

T(n,l) < cn forli <3 )
T(nl) < conl+T(h, f) LT 0) for >3 E. Further Refinements
In this case using a bottom-merge-like coding method has

wherel < 3 is the base case. Thefi(n,l) = O(7(n,l)), an additional benefit. We no longer need assume that all
wherer is any function satisfying the recurrence p; # 0 to assure that the nodeset is a valid code. In finding
optimal binary codes, of course, it is best to ignore an item
with p, = 0. However, consider nonbinary output alphabets,
that is, D > 2. As in Huffman coding for such alphabets,
which 7(n, 1) = (¢1 + 2¢2)nl does. Thus, the time complexitywe must add “dummy” values gf; = 0 to assure that the

is O(nlmax)- B optimal code has the Kraft inequality satisfied with equality, an

T(n,l) > an forl <3

T(n,l) > emnl+7(R i)+ 7(n—n,L) fori>3
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[ (level) p (width)

1

lmid
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i (item)

Fig. 2. The set of node$, an optimal nodesedV, and disjoint subsetsl, B, C, D

assumption underlying both the Huffman algorithm and ouris solved forO(n?) values ofa and 3 [6]. In this application,
The number of dummy values needediisd(D —n, D — 1) only one traditional Huffman coding would be necessary to
wheremod(z,y) £ © — yL%J and where the dummy valuesfind an upper bound for all quadratic cases.

each consist of . nodes, each node with the proper width With other problems, we might wish to instead use a
and with weight0. With this preprocessing step, finding am€mathematically derived upper bound. Using the maximum
optimal code should proceed similarly to the binary case, witthary codeword length af — 1 and techniques involving the
adjustments made for both the Package-Merge algorithm aBdiden Mean® £ % Buro in [30] gives the upper limit
the overall coding algorithm due to the formulation of thef length for a (standard) binary Huffman codeword as

Kraft inequality and maximum length. A complete algorithm

. : . : . 41
is available, with proof of correctness, in [28]. mln{ {bg@ (—)J ,n— 1}

Note that we have assumed for all variations of this algo- Pn® + po
rithm that we knew a maximum bound for length, although iwhich would thus be an upper limit on codeword length for
the overall complexity analysis for binary coding we assumétie minimal optimal code obtained using any flatter penalty
this wasn — 1 (except for flat classes). We now explore dunction, such as a convex quasiarithmetic function. This may
method for finding better upper bounds and thus a more effie used to reduce complexity, especially in a case in which
cient algorithm. First we present a definition due to Larmorge encounter a flat class of problem inputs.

Definition 9: Consider penalty functiong and g. We say  In addition to this, one can improve this algorithm by
that ¢ is flatter than f if, for probabilities p and p’ and adapting the binary length-limited Huffman coding techniques
positive integerd and !’ wherel’ > 1, M (l,p)M;(I',p’) < Of Moffat (with others) in [17]-{20], [22]. We do not explore
M (l,p)My(I',p') (where, againM;(1,p) 2 f(l,p) — f(l — these, however, as these cannot improve asymptotic results
1,p)) [6]. with the exception of a few special cases. Other approaches

A consequence of the Convex Hull Theorem of [6] is that® length-limited Huffman coding with improved algorithmic
given g flatter thanf, for any p, there existf-optimal 1N complgxﬂy [21], [23] are not suited for extension to nonlinear
and g-optimal 1(9) such that!!) is greater lexicographically Penalties.
thani(9) (again, with lengths sorted largest to smallest). This
explains why the word “flatter” is used. V. CONCLUSION

Thus, for penalties flatter than the linear penalty, we canWwith a similar approach to that taken by Shannon for Shan-
obtain a useful upper bound, reducing complexity. All convexon entropy and Campbell foreRyi entropy, we have shown
quasiarithmetic penalties are flatter than the linear penaltgdundancy bounds and related properties for optimal codes
(There are some generalized quasiarithmetic convex codiigng Campbell’s quasiarithmetic penalties and generalized
penalties that are not flatter than the linear penalty — e.gntropies. For convex quasiarithmetic costs, our algorithms,
fi,pi) = lip; — and some flatter penalties that ar@ased upon Larmore and Hirschberg's methods for the linear
not Campbell/quasiarithmetic — e.gf,(l;,p;) = 2%(p; + penalty, can efficiently find an optimal code. Such algorithms
0.1sin7p;) — so no other similarly straightforward relationcan be readily extended to the generalized quasiarithmetic
exists.) For most penalties we have considered, then, we g@nvex class of penalties, as well as to the delay penalty, the
use the upper bounds in [30] or the results of a pre-algorithmigter of which results in more quickly finding an optimal code
Huffman coding of the symbols to find an upper bound ofor delay channels.
codeword length. One might ask whether the aforementioned properties can

A problem in which pre-algorithmic Huffman coding wouldbe extended; for example, can improved redundancy bounds
be useful is delay coding, in which the quadratic penalty ()milar to [12], [37]-[40] be found? It is an intriguing question,
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albeit one that seems rather difficult to answer given that sulgorithm variables
general penalties lack a Huffman coding tree structure. At any point in the algorithm, given nontrivial and ¢, we
addition, although we know that optimal codes for infiniteise the following definitions:

alphabets exist given the aforementioned conditions, we do not Remainder

know how to find them. This, as with many infinite alphabet toow = the uniquer € 2% such

coding problems, remains open. that% is an odd integer
It would also be interesting if the algorithms could be Minimum width

extended to other penalties, especially since complex models p* &  mingez p; (Notep* € 2%)

of queueing can lead to other penalties aside from the delay gmal width set

penalty mentioned here. Also, note that the monotonicity prop- 5 2 {i|pi=p)

erty of the examples we consider implies that the resulting op- (by definition, |Z*| > 1)

timal code can be alphabetic, that is, lexicographically ordered
by item number. If we desire items to be in a lexicographical
order different from that of probability, however, the alphabetic )
and nonalphabetic cases can have different solutions. This was “Second” item
discussed for the length-limited penalty (5) in [35]; it might (. arg Min;ez.\ (i} Mi
be of interest to generalize it to other penalties using similar (or null A if |Z¥] =1) .
techniques and to prove properties of alphabetic codes for sugien the following is a recursive description of the algorithm:
penalties. Recursive Package-Merge Procedur§l6]

Basis.t = 0: CC(Z,1t) is the empty set.
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CC(Z\{i*,i**} U {#'},t) (the optimization of the packaged
version). Ifi € S, then CC(Z,t) = S'\{¢'} U {i*,i**};
otherwise,CC(Z,t) = 5.

“First” item

Z’*

(1>

arg min;cz« fl;

(1>

APPENDIX
THE PACKAGE-MERGE ALGORITHM

Here we illustrate and prove the correctness of a recursiveThis algorithm always returns an optimal solution, as fol-
version of Package-Merge algorithm for solving the Coitows:
Collector’s problem. This algorithm was first presented in [16], Theorem 6:1f an optimal solution to the Coin Collector’s

which also has a linear-time iterative implementation. problem exists, the above recursive (Package-Merge) algo-
Restating the Coin Collector’'s problem: rithm will terminate with an optimal solution.
MInIMIze (5c (1o my) Siep i Proof: We' show that the. Packgge-Merge algorithm
subject to et Z%EB pi=t produges an optlm_al _soll_Jtl_on via induction on th(_a depth of the
Where - le€BZ+ recursion. The basis is t'r|V|aIIy correct, and.each !nductlve case
i € R (20) reduces the number of items by one. The inductive hypothesis
p? c oz ont > 0 andZ # 0 is that the algorithm is correct for
tle R,. any problem instance that requires fewer recursive calls than

instance(Z, t).
In our notation, we usé € {1,...,m} to denote both the If Z = () andt¢ # 0, or if p* > tpow > 0, then there is
index of a coin and the coin itself, arid to represent the no solution to the problem, contrary to our assumption. Thus
m items along with their weight$u;} and widths{p;}. The all feasible cases are covered by those given in the procedure.
optimal solution, a function of total width and itemsZ, is Case 1 indicates that the solution must contain an odd number
denotedCC(Z, ). of elements of widthp*. These must include the minimum
Note that we assume the solution exists but might not beeight item inZ*, since otherwise we could substitute one
unique. In the case of distinct solutions, tie resolution faf the items with this “first” item and achieve improvement.
minimizing arguments may for now be arbitrary or rule-base@@ase 2 indicates that the solution must contain an even number
we clarify this in Subsection IV-D. A modified version of theof elements of widthp*. If this number i), neither:* nor:**
algorithm considers the case where a solution might not exigt,n the solution. If it is not, then they both areiff = A, the
but this is not needed here. Because a solution exists, assunmninmber is0, and we have Case 2a. If not, we may “package”
t >0, t = wtpoy fOr some unique odd) € Z andt,o € 2%, the items, considering the replaced package as one item, as in
(Note thatt,. need not be an integer. #f= 0, w andt,., Case 2b. Thus the inductive hypothesis holds and the algorithm
are not defined.) is correct. ]
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p=2 p= p= p= t=3=11
n=> n=4 =2 w=1
p=1
n=>5 }1,:6
Su=6
w=>5
p=1
p=2 t=0=0
p==6

Fig. 3. A simple example of the Package-Merge algorithm

Fig. 3 presents a simple example of this algorithm at workj9]
finding minimum total weight items of total width= 3 (or, in
binary,115). In the figure, item width represents numeric widthtO
and item area represents numeric weight. Initially, as shown
in the top row, the minimum weight item with widtp;~ = [11]
trow = 1 iS put into the solution set. Then, the remaininglz]
minimum width items are packaged into a merged item of
width 2 (102). Finally, the minimum weight item/package with
Width p;« = tew = 2 is added to complete the solution setl'®!
which is now of weight6. The remaining packaged item is
left out in this case; when the algorithm is used for codingf4]

several items are usually left out of the optimal set. [15]
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