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A General Framework for Codes Involving explored. Parker proposed an algorithmically-motivated two-

Redundancy Minimization function parameterization defining various Huffman coding

problems; these two parameter functions are a “weight combi-

nation” function and a “tree cost” function [4]. Three problems,

Michael Baer,Member, IEEE first examined in [1], [7], [8], were considered as a part of this

framework; here we show that a fourth [9] fits into it as well.

In addition, we find a simpler redundancy-motivated unifying

Abstract— A framework with two scalar parameters is introduced  proplem class that relates the four problems, one involving two
]::(gdi\rlxgngléialrt);o?lﬁz]tison(.)fTEgdlf?gmgwg:iﬂénggr?\%a?slglsmgrlggle;S scalar parameters rather the_m two funptional parame_ters. _This
previously proposed by Huffman, Campbell, Nath, and Drmota Ne€w framework reveals a united analytical structure, including

and Szpankowski, shedding light on the relationships among these simple redundancy bounds and novel algorithmic results which
problems. In particular, Nath’s range of problems can be seen as jmprove upon the algorithm of [9].

bridging the minimum average redundancy problem of Huffman

with the minimum maximum pointwise redundancy problem of |n Section II, background is given on the coding problem
Drmota and Szpankowski. Using this framework, two linear-ime ;1 0q\,ced in [7]. In Section IIl, the new framework, based
Huffman-like algorithms are devised for the minimum maximum . . .
pointwise redundancy problem, the only one in the framework not ©ON @n extension of this problem, is introduced. The problem
previously solved with a Huffman-like algorithm. Both algorithms ~ and the three other aforementioned problems are then put into
provide solutions common to this problem and a subrange of the context of this framework. In Section 1V, the framework
Nath’s problems, the second algorithm being distinguished by its is used to help find linear-time algorithms for the problem

ability to find the minimum variance solution among all solutions . . . .
common to the minimum maximum pointwise redundancy and in [9]. Redundancy bounds are presented in Section V, with

Nath problems. Simple redundancy bounds are also presented. ~ concluding thoughts following in Section VI.

Index Terms— Huffman algorithm, minimax redundancy, optimal

prefix code, Renyi entropy, unification Il. BACKGROUND: EXPONENTIAL HUFFMAN CODING

One particular application of a modified coding problem was
found by Humblet [10] for a problem involving minimization
of buffer overflow in communications. In this application, the
function minimized isy",_, p;2°" for a given3 > 0. This

is easily generalized to negatiykeby specifying minimization

of the 3-exponential average

|I. INTRODUCTION

A source emits symbols drawn from the alphab®t =
{1,2,...,n}. Symbol: has probabilityp;, thus defining prob-
ability mass function vectop. We assume without loss of
generality thatp; > 0 for everyi € X, and thatp; < p; for Fs(p,1) A llogQ ZpiQBli. (1)
everyi > j (i,5 € X). The source symbols are coded into B icx

binary codewords. Each codeworg corresponding to symbol

i has lengthi,, thus defining length vecta This problem was originally proposed by Campbell [7] and a

linear-time algorithm found independently by Hu et al. in [3,

It is well known that Huffman coding [1] yields a prefix codeP- 254], Parker in [4, p. 485], and Humblet in [11, p. 25] (later
minimizing 3", , pili given the natural coding constraints:Published as [10, p. 231]). This algorithm covers allffthe

the integer constraint}; € Z,, and the Kraft (McMillan) case of3 = 0 is considered by noting that — 0 yields the
inequality [2]: original Huffman coding problem.

—1;
Z 2rstL Below is the procedure for the exponential extension of Huff-
iex man coding with parameteB. Note that it minimizes (1)

Hu, Kleitman, and Tamaki [3] and Parker [4] independently exver L even_ if the “prgbat_)llltles” do_ not add th. We refer
such arbitrary positive inputs ageights often denoted by

amined other cases in which Huffman-like algorithms were 069 : ]

timal; this work was later extended [5], [6]. Other modifications® ~ {wi} instead ofp = {pi}:

of the Huffman coding problem were considered in analytical ) )
papers [7]-[9], although none of these proposed a Huffman- Procedure for Exponential Huffman Coding
like algorithmic solution. In each paper, relationships between

the modified problem and the Huffman coding problem were 1) Bach itemm; € {m1,ms,...,mn} has weightw; €

Wy, whereWy is the set of all such weights. (Initially,

This work was supported in part by the National Science Foundation ~ m; = i.) Assume each itenm; has codeword:;, to be
(NSF) under Gran€CR-9973134 and the Multidisciplinary University determined later.

Rel\s;le?gd‘ litiative 'EhMLtJhRI)Dundetr Gratnt fDélADt‘gt?Q‘l‘O?ﬁ-St 2) Combine the items with the two smallest weights
. Baer was with the Department of ElectricBhgireering, Stan- ; . R ; .
ford University, Stanford, CA 94305-9505 USA. He is now with a~nd wkﬂmto one itemm; with the combined weight
Electronics for Imaging, 303 Velocity Way, Foster City, (94404 w; = 27 (w; + wyg). This item has codeword;, to be
USA (e-mail: Michael.Baer@efi.com). determined later, whilen; is assigned code; = ¢&;0
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andm,, codec, = ¢;1. Since these have been assignetengths achieving (2) are given by

in terms of¢;, replacew; andwy with w; in W to form 1 .
N
Ws. L = —75plosapi +log, > ;. ®3)
3) Repeat procedure, now with the remaining- 1 code- jex

words and corresponding weights W, until og'l)’ On€é At the extremes of thé—1, +oo) range, solutions are defined
item is left. The weight of this item i3, w2 All 45 the limit of the solutions fob | —1 and b | +oo,
codewords are now defined by assigning the null stringgpectively. Fob < —1, there is no real-valued solution, the

to this trivial item. problem being optimized byl = 0 and ! = +oc for every

7> 1
This algorithm can be modified to run in linear time (to input
size) given sorted weights in the same manner as Huffman
coding [12]. An example of exponential Huffman coding for |11 M INIMIZATION OF d-AVERAGE b-REDUNDANCY
B = log,1.1 is shown in Figure 1. The resulting code is

different from that which would be obtained via Huffmanye cal the difference between an integerand the optimal
coding (3 = 0). real-valued solutiori] the pointwiseb-redundancy

The output of a Huffman-like algorithm might be a code (and
thus the implicit code tree, e.g., [13]) or merely codeword
lengths; we assume the latter from here on, because valil emphasize its dependence énThe arithmetic average
codewords can be inferred from the lengths. Thus we can viey# pointwise 0-redundancy was the problem considered by
the problem such an algorithm solves as an integer optimizatiefuffman in his original paper, “A Method for the Construc-
problem. This is useful because many different codes c&on of Minimum-Redundancy Codes.” Here we introduce a
correspond to the same set of codeword lengths and thus gdineralization of this problem encompassing several cases of
be optimal for a given problem. interest.

ro(d) 21, — 1T,

Considering the codeword lengths alone as the solution toSappose we wish to minimizel-average b-redundancy or
given problem, we find that some problems have a uniqUBABR
imizi i 1 (i

optlmlzmg _set of Ier)gths, whlle o@hers have more thar_1 one Ro.a(p,1) A log, Zpi2d b () )

distinct optimal solution. Multiple different solutions manifest d

themselves in the algorithm as possible ties in the weight N

of (possibly combined) items in the combination step (stepiS @mounts to findind; 4(p) such that

2 above). Thus the algorithm, as with Huffman coding, is p Ik
L TG W b,a(Ps U5.a(P))

nondeterministic. Two deterministic variants da@tom-merge

I€EX

minl thd(p, l)

1
Huffman codingand top-merge Huffman codingl3]. Code = élogQ Ziexpi??(l; (l;)

trees yielded from the former method have been called, depend- = ming Llog, 3. p, 'T° odl;
ing on the properties focused updmest Huffman tree§l4], Y
compact Huffman tree$l5], minimal Huffman treeg16], ’ ! (5)

and minimum variance Huffman tregd7], the last of these wherel is restricted to the integers and by the Kraft inequality
because variance is minimized among (tied) optimal code tre@splicit from here on).

(codeword lengths). ) ) )
This reduces to an exponential Huffman coding problem. Then,

Givenb € R and p, if we relax the integer constraint o given sorted{p;}, (5) is solvable in linear time; note that
minimizing F(p, ) becomes a simple numerical optimizationthe normalization of the terms is optional for the algorithm.
and provides a lower bound for the integer-valued problerfror d < -1, the solution is always the unary code =
(We useb instead of3 from here on to refer to the parameter for(1, 2, ... , n—1, n—1). Considering the edges via limiting
the real-valued problem.) Campbell [7] noted that the optimghs we did with real-valued solutions), the range of nontrivial
value of Fy,(p, 1) for b € (=1, +00)\{0} is the Rényi entropy cases for minimal DABR codes for a given probability mass
of ordera = (1 +b)"*: function can thus be considered to be parameterizelixby €
[—1, 4+00] x [-1, 400], as in Figure 2.

A

Ha(p) T51085 X 1Y @

1+b (1+b)~1 As indicated in this figure, many interesting coding problems
= Fog Y iexpi ’ fit within this framework. These problems, which we discuss

This should not be surprising given the relationship betweé??low* correspond to subsets of this two-dimensional extended

Huffman coding and Shannon entropy, which corresponds @adrant {1, +oc] x [—1,+oc]). On the set of points for
b— 0, Hy(p) [18]. which b is +oo, for example, the minimization reduces to

exponential Huffman coding with parametér= d. Ford = 0
Given b € (—1,4+0c0) and p, the optimal ideal real-valued (b € (—1, 4+o0]) we have Huffman coding. A particular type
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Codeword

length Codeword Item Weight

2 00 mi 0.36 0.374 0.726 7 121
2 01 ma 0.30 0.36 0.374

2 10 ms 0.20 0.30

2 11 ma 0.14

Fig. 1. Exponential Hdfman coding for weightsw = (0.36,0.30,0.20,0.14) and 8 = logy1.1. In the first step, the two smallest items
(with weightsws = 0.20 andws = 0.14) are combined into a compound item with weigh874 = 1.1 - (0.20 + 0.14); thuscs andc4 end

in 0 and 1, respectively. At each adibnal step, the two smallest remaining items are combined in a similar fashion. In this manner a code to
optimize (and as a by-product calculate) the value 0f, w; 2P s built from the bottom up. In this case, the minimized valud .i1.

of Huffman coding occurs fob = +o0, d | 0. In such a case, In order to overcome the first two deficiencies, we propose a
we note that reduction to a previously-known algorithm with linear com-
d , 5 plexity previously discussed by Parker [4]. This problem was
Roa(p,l) = pili + 5op() +0(d”)  asd =0 (6) termed theree-height measurgroblem, though it was not pre-
iex viously considered in the context of the maximal redundancy

where the second term on the right-hand side represefisDABR problems.

variance. This being the tie-breaking term, we have bottorq.he tree-height measure problem minimizes the maximum

merge Huffman coding. value ofw; + ¢ - I; given ¢ > 0 and weight vectorw. Instead

of usingw; = 2°(w; + wy,) on the merge step of Huffman
coding, the Huffman-like tree-height measure algorithm uses
w; = c+max(w;, wk). In order to use the tree-height measure
algorithm, assign weights according to

As average pointwiséf)redundancy has been well understood

for some time, Drmota and Szpankowski decided to explore () = 1
the previously overlooked minimization of maximal pointwise 140
redundancy [9], [19].

IV. MINIMIZATION OF MAXIMAL POINTWISE REDUNDANCY

Di
log, —,
P

which is always nonnegative, and let= 1. Then this modified
We definedth exponential redundancy as DABR for= 0. Huffman algorithm minimizes
Note that the maximal redundancy problem is equivalent to
minimizing dth exponential redundancy ak — +oo. Thus, 1 Di
consideringd € [0,4o0], dth exponential redundancy is max (li+1_-wlogzﬁ)
a subproblem with a parameter that varies solution values —  maxn(i) + log, ijﬁ
JEX

miax(wi(b) +c-l;)

between minimizing average redundancy (Huffman coding)
and minimizing maximal redundancy; such a range of problems 1
and solutions was sought in [19]. This was previously derived —log,pn™’.

axiomatically without regard to such a range and without

solution [8]. The version of the minimal DABR coding solutionThus this linear-time algorithm returns a length vector minimiz-
applying to the maximal redundancy subproblem was fouridg maximumsb-redundancy and satisfying the Kraft inequality
shortly thereafter [4], although it was not generalized t6 0  with equality.

or tod = +oo. . . . . .
Because ties can occur in selecting weights to combine, the ex-

Drmota and Szpankowski presented a simple method for fingdenential Huffman algorithm might yield one of many possible
ing a code with minimum maximal redundancy [9], [19]. How-optimal codes, including codes not optimal for the limitdbh

ever, this solution is deficient in the following senses: Firsgxponential redundancy (as— +oc). For example, consider
time complexity isO(nlogn). Second, the Kraft inequality p = (53, 15, 15, 15 15)- For dth exponential redundancy,

is not necessarily satisfied with equality, meaning that the= (1,2,3,4,4) andl = (1,3, 3,3,3) are both optimal for
optimal code found in this manner is often, in some sensé, — +oco. These not only minimize maximal redundancy,
wasteful. Third, the code does not necessarily optimife but, among codes that optimize this, these codes also have the
exponential redundancy for amy/< +oo. The method is also lowest probability of achieving this maximal redundancy, as
not generalized to maximairedundancy { # 0). this is related to the second term of the expansioRof (p, 1)
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too T ,,,,,\,,,,, ''''''''''''''''''''''''''''''''' 8 Q that a sufficiently largeD is given by D = log, 2 > 1

~,  [20, pp. 59-62]. However, findingd> requires sorting, so an

maximal . . . . .
\ b-redundancy algor!thm derived from thisD would not be a linear-time
algorithm.
maximal Fortunately, it is possible to arrive at a linear-time algebraic
redundancy

% Huffman algorithm, that is, one that kee@$ as a variable.
; Algebraic Huffman algorithms were introduced by Knuth [5].

dth exponential
redundancy

The one proposed here uses a Huffman algorithm which keeps
track of both the first- and second-order terms; ties between
these pairs of terms can occur only when all terms are tied,
this due to the manner in which the Huffman procedure

works. Before explaining why this is the case, we present the
algorithm.

. exponential
‘ (Huffman) codin

Y Hugfsntwaal;dig:j)ing bottom-merge i
: Huffman codin i . .
\ / g\; The aforementioned first- and second-order terms are
! A . a1
| w, = th [wi (b, d)] )

— 400

. ,,,,,,,,,, L 88 and

10 o w) & Jim ey (b, d)) 7 - [wf]”,

) o respectively, where leaf nodes have
Fig. 2. The parameter space for minim&laverageb-redundancy

(DABR) coding with the following noted subproblems: the Fuén Ltedd
problem (the above line af = 0), Campbell’s exponential coding wi(b,d) = p, )
problem (line atb = +o0), the problem solved via Schwartz's
bottom-merge Huffman coding method (limit point @ oo, 0) when
approached from above), Nath&h exponential redundancy problem . ’ . . . .
(line atb = 0), Drmota and Szpankowski’s maximal redundancy (poinpne. can think ofw; as representing an invertible function of
at (0,+00)), and maximalb-redundancy (line ai = +oc). Each maximal b-redundancy,

point in the extended quadrant represents a different (parameterized)

as ind-averageb-redundancy.

roblem, as in Figure 5. LN max: 7 (3
p s w; = |:ij-1“:| Sgmaxi (i)
Jj=1
for d — oo where, at any given point of the algorithm, (i) = I; — 1]
) uses the depth of item in its interim code tree as the value
Rpa(p,l) = 3logy Y, pi2¥ I;. Note that onlyr, (i) is variable; the denominator term of
= max; (i) (7) wi is aresult of not normalizing the weights at the start of the
+ glogy Px [rs(X) = max; 74 (5)] algorithm. In a similar mannery! represents the probability
+0 (z7) asd — 400 of maximal b-redundancyPx [, (X) = max; r4(4)].

Each term in the expansion has a different asymptotic com- . ) 1

plexity. As with minimum variance (bottom-merge) Huffman'© implement this algorithm, we @32 =p,; " andw; =Ppi
coding (6), each additional term further restricts the set §pr the initial case. In comparing itemsand k, we consider
feasible codes to those that minimize the current term given tHi€M as lexicographically ordered pairs — €l = (11/137 wy)
optimization of previous terms. In the above example, all ternis, ° th/at“’j Zka if ?nd only if eitherw; > wj, or if
are minimized by both the aforementioned sets of lengths. i = @k @nd wj > wg, as in [5]. In combining items;
contrastl = (2,2,2,3,3), although also minimizing maximal and & (wherew; > w;. as described), the new item will have

_ ;o oo ’ ’ ~1 I
redundancy, results in a code where codewords have a highiar = 2¢; :/2 : mfjlx(wj;/wk)- If wj > wi, thenwj = wj.
probability of achieving maximal redundancy. This solutionOtherwisew; = wj +wy. Thatis,
which is in some sense inferior, can nevertheless be achieved (2w}, w!) if w > wj,

(2w}, wi +wy)  otherwise.

by the tree-height measure algorithm, specifically the bottom- Wy =

merge version.

The reasons for this are easily seen if we viewas the repre-
It is possible to find @ € R such that, for everyl > D, dth  sentation of maximal redundancy and probability this maximal
exponential Huffman coding minimizes maximal redundancyedundancy is achieved. Take the maximum and Bhdior the
Let min;fj ~i,; denote the minimum strictly positive value ofadditional bit of the codeword (multiplyingv; by 2). Then,
~vi.j,» and let{z) denote the fractional part of, i.e., (z) £ if the redundancies are identical, add their probabilities )(

x — |z]. Assignd = minjj(l} — l;). It is possible to show Otherwise, take the probability of the maximal redundancy.
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li ¢ mi 19-p0 19-w;
1 1 m 8 (8,8 —— (8,8) — (8,8) (16, 4) (32, 4)
3 000  mo 4 4,4 (4, 4) 8,4 % (8,8

3 001  ms 3 (3,3 4, 4) % 4,9

3 010  my 2 2,2 3,3)

3 011  ms 2 (2,2

Fig. 3. Algebraic maximal redundancy coding,= % - (8,4,3,2,2) (bottom-merge)

This combining method is a Huffman algebra, satisfying the V. BOUNDS

properties introduced in [5]. The Huffman combining criterion

is shown by example in Figure 3. The remaining weight pair

after coding, (22, &%), indicates a maximal redundancy ofOne can easily see that if we relax the integer constraint on

log, 22 and a probability of% that this redundancy is achieved.length for minimizingd-averageb-redundancy, the real-valued
solution is notl®, but some differeni*. By substituting the

We now show that ties in the pairs imply ties in all terms solution in (3), we find

of the expansion presented in (7), or, equivalently, dbn
exponential redundancy for all€ [D, +oc0) whereD is some
. F=_u-l 41 w
(unspecified) constant. i w - l0gypi + 108, p;
JjeEX
Theorem 1:If there is a tie in the above pairs, there is a tie

in all terms of the corresponding expansion. — l4btd bd
wherew = 0D = 1-— EEAIEETIR

Proof: Consider two tied pairs. Note that, in each, Note that when the values df and d are exchanged, the

. ideal solution remains the same. This problem thus has a high
w, > w) T+ (8) degree of symmetry. However, because the problem itself is not
symmetric, the symmetry of integer solutions is not perfect, as

because this holds with equality in leaf nodes and the inequali\f\{/e can see in Figure 5.

is preserved in the merge step, sicemax(a,b) > a+b>  Using this and the Shannon code [18] analogifd, we can
max(a, b) for a,b > 0. If inequality (8) holds without equality find bounds for the optimal DABR whet > —1, d > —1,
for the tied pairs, neither node on the corresponding code trggdp + d > —1:

can be a leaf node, and, due to ordering for the combination a
step, their four children must be identically weighed. However,
this fact can be invoked inductively for either pair of children,

also tied, and thus such a tree could not be finite. Therefore,

tied pairs arise only in cases for which the inequality holdahere we recallv = % anda = ﬁ the subscript

with equality. Thus, they must be leaf nodes or nodes withf Rényi entropy in (2). As with exponential Huffman coding,
two identically-weighted children. Inductively, this means thequality holds iff the ideal solutiod* has all integer lengths.
subtrees must be composed of leaf nodes thatrelegively For b = +oo and d = 0, this results in the well-known
dyadic that is, are dyadic when multiplied by a nontrivialShannon bounds. Fér= 0, it reduces to a normalized version
common constant. Thus they are equal in all terms, which & an inequality in [8]. With a different normalization, this
what we set out to show. B inequality relates to Biyi’s gain of information of order, a

eneralization of relative entropy [21]. This is not surprising

One can use bottom-merge or top-merge coding so that tgﬁlen the relationship between relative entropy and Huffman
glgorlthnj is deterr_nlnlst!c. If one uses top-merge cc_)dln_g __th%bding noted by Longo and Galasso [22].

is, favoring combined items over single items with identical

weight [13] — one actually need not keep track of the secoridue to the reduction to exponential Huffman coding, more
term; the top-merge algorithm behaves identically withowgophisticated redundancy results may be applied if desired.
considering this term. This variant, illustrated in Figure 4, i¥he bounds given by Blumer and McEliece [23] apply to the
actually a special case of the tree-height measure problem merponential case but appear as solutions to related problems
tioned above. However, if we wish to assure that the solutioather than in closed form. Taneja [24] gave closed-form
has minimum variance, the algebraic method is needed.  bounds using an alternative definition of redundancy.

0 < Rp,a(p,15,4(p)) — ab(Hu(p) — Ha(p)) <1



IEEE TRANSACTIONS ON INFORMATION THEORY 6

l; ¢ m; 19-pi 19-w]

1 1 m 8 8 8 8 16 32
2 01 ma 4 4 4 8 8 :

3 001 ms 3 3 4 4

4 0000  my 2 2 3

4 0001  ms 2 2

Fig. 4. Top-merge maximal dendancy codingp = % - (8,4, 3,2,2) (single variable)

@1 : : considered by Parker; the top-merge version of the algorithm
: \ : in particular additionally optimizegth exponential redundancy

N} 3 § for large d. A better solution — one minimizing codeword

: } length variance among such optimal codes — is suggested

\ § by and is developed from the two-dimensional framework

: ; introduced here. All algorithms discussed are Huffman-like

? 3 and thus linear-time given sorted input, unlike the original

d \ ®) algorithm proposed for maximal redundancy.

‘ § It is unclear whether all nontrivial problems within Parker’s
: ‘ more general framework are covered by this seemingly more
: specific framework and trivial extensions thereof. Such analy-
) § sis, building upon Parker's work, could be a basis for further
: research. Extending this algorithm to alphabetic codes (alpha-
betic search trees) could also be explored. For nonnegative
exponents ¢ > 0), this framework is a trivial extension of [3],
but negative exponents might provide more of a challenge.
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