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Abstract—Let P = {p(i)} be a measure of strictly positive the probability of symboliisp(i) > 0. The source symbols are
probabilities on the set of nonnegative integers. Althougithe  coded into binary codewords. The codewaefd) € {0,1}* in
countable number of inputs prevents usage of the Huffman codeC, corresponding to input symbal has length (i), thus

algorithm, there are nontrivial P for which known methods . s .
find a source code that is optimal in the sense of minimizing defining length distributionV. Such codes are calladteger

expected codeword length. For some applications, howeveg codes(as in, e.g., [2]).

source code should instead minimize one of a family of nonlaar Perhaps the most well-known integer codes are the codes
objective f_unf(tj;)ns, f-exponential means, those of the form derived by Golomb for geometric distributions [3], [4], and
log, > p(i)a™", where n(i) is the length of theith codeword —ony oiher types of integer codes have been considered by
and a is a positive constant. Applications of such minimizations . .

include a novel problem of maximizing the chance of message others [5]. There are m_amy reasons for using such integescod
receipt in single-shot communications ¢ < 1) and a previously rather than codes for finite alphabets, such as Huffman codes
known problem of minimizing the chance of buffer overflow The most obvious use is for cases with no upper bound — or
in a queueing system ¢ > 1). This paper introduces methods at least no known upper bound — on the number of possible
for finding codes optimal for such exponential means. One jioms |n addition, for many cases it is far easier to come up

method applies to geometric distributions, while another aplies . .
to distributions with lighter tails. The latter algorithm i s applied with a general code for integers rather than a Huffman code fo

to Poisson distributions and both are extended to alphabeti @ large but finite number of inputs. Similarly, it is often s
codes, as well as to minimizing maximum pointwise redundarc  to encode and decode using such well-structured codes. For
The aforementioned application of minimizing the chance of these reasons, integer codes and variants of them are widely
buffer overflow is also considered. used in image and video compression standards [6], [7], as
Index Terms— Communication networks, generalized en- well as for compressing text, audio, and numerical data.
tropies, generalized means, Golomb codes, Huffman algohitn, 1o date, the literature on integer codes has considered
optimal prefix codes, queueing, worst case minimax redundany. only finding efficient uniquely decipherable codes with restp
to minimizing expected codeword leng¥i, p(i)n(i). Other
utility functions, however, have been considered for finite
|. INTRODUCTION, MOTIVATION, AND MAIN RESULTS  g|phabet codes. Campbell [8] introduced a problem in which
If probabilities are known, optimal lossless source codirifje penalty to minimize, given some continuous (strictly)
of individual symbols (and blocks of symbols) is usuallynonotonic increasingost functionp(z) : Ry — R, is
done using David Huffman’s famous algorithm [1]. There

are, however, cases that this algorithm does not solve.-Prob L(P,N,p) = ¢! Zp(i)sﬁ(n(i))

lems with an infinite number of possible inputs — e.g., -

geometrically-distributed variables — are not coveredsoAl » ] ) ]
in some instances, the optimality criterion — penalty — and specifically considered the exponential subcases with

is not the linear penalty of expected length. Both variarits §XPonent > 1:
the problem have been considered in the literature, but not a N n(s)
simultaneously. This paper discusses cases which are both La(P,N) = logazp(l)a (2)
infinite and nonlinear. _ o .
An infinite-alphabet source emits symbols drawn from tH&at is, ¢(xz) = a®. Note that minimizing penalty. is also an
alphabett,, = {0,1,2,...}. (More generally, we use’ to interesting problem fob < a < 1 and approaches the standard
denote an input alphabet whether infinite or finite.) IRt="penalty 3_; p(i)n(i) for a — 1 [8]. While o (x) decreases
{p(i)} be the sequence of probabilities for each symbol, so tHaf a < 1, one can map decreasing to a corresponding
increasing functionp(l) = @max — (1) (€.9., for pmax =

This work was supported in part by the National Science Fatiod (NSF) 1) without Changing the penalty value. Thus this problem,
under Grant CCR-9973134 and the Multidisciplinary UniitgrsResearch

Initiative (MURI) under Grant DAAD-19-99-1-0215. Part dfi$ work was equn{alent to maXImIZIngz:ip(i)a"(Z) J is a subset of those
performed while the author was at Stanford University. Timaterial was considered by Campbell. All penalties of the forfd (1) are

presented in part at the IEEE International Symposium ororinétion caIIedﬁ-exponentiaI means, whefe= log,a [9, p. 158].
Theory, Seattle, Washington, USA, July 2006 and at the |ERErhational 2

Symposium on Information Theory, Nice, France, June 2007 Ca_mpbell nOt?d certal_n pr_opertles férexponential m_e_anS'
The author is with Ocarina Networks, Inc., 42 Airport Pariw@an Jose, but did not consider applications for these means. Appéioat
CA 95110-1009 USA (e-maltalbea@:eee.org). were later found for the problem witta > 1 [10]-[12]; these

This work has been submitted to the IEEE for possible putitina licati Il rel buff fl bl di
Copyright may be transferred without notice, after whicls thersion may applications all relate to a butfer overflow problem iseubs

no longer be accessible. in Section[Y.


http://arxiv.org/abs/cs/0511003v3

IEEE TRANSACTIONS ON INFORMATION THEORY 2

Here we introduce a novel application for problems of theherel,,;)<, is 1 if n(i) <, 0 otherwise. Minimizing[(LL) is
form a < 1. Consider a situation related by Alfred Rényian equivalent objective.
an ancient scenario in which a rebel fortress was besieged byNote that this problem can be constrained or otherwise
Romans. The rebels’ only hope was the knowledge gathemddified for the application in question. For example, in som
by a mute, illiterate spy, one who could only nod and shakmases, we might need some extra time to send the first bit, or,
his head [13, pp. 13-14]. This apocryphal tale — based upomkernatively, the window of opportunity might be of at leas
historical siege — is the premise behind the Hungarian @arsia certain duration, increasing or reducing the probabiligt
of the spoken parlor game Twenty Questions. A modeno bits can be sent, respectively. Thus we might have
parallel in the 2% century occurred when Russian forces . =0
gained the knowledge needed to defeat hostage-takers by P(7' =t) = { ((i’—t )1 —a)at~t, t=1,2
asking hostages “yes” or “no” questions over mobile phones 0 ’ e

[14], [15]. for somet, € (0,1). In this case,

Rényi presented this problem in narrative form in order (1—to) . _
to motivate the relation between Shannon entropy and binary Pln(X) <T]= Y Zp(l)an(l)
prefix coding. Note however that Twenty Questions, traddio i€X

prefix coding, and the siege scenario actually have thraad the maximizing code is identical to that of the more
different objectives. In Twenty Questions, the goal is to bstraightforward case. Likewise, if we need to send multiple
able to determine the symbol (i.e., the item or messag@essages, the same code maximizes the expected number of
by asking at most twenty questions. In prefix coding, thedependent messages we can send within the window, due to
goal is to minimize the expected number of questions the memoryless property.
or, equivalently, bits — necessary to determine the messageWe must be careful regarding the meaning of an “optimal
For the siege scenario, the goal is survival; that is, assgmicode” when there are an infinite number of possible codes
partial information is not useful, the besieged would wishinder consideration. One might ask whether there must exist
to maximize the probability that the message is succegsfulin optimal code or if there can be an infinite sequence of codes
transmitted within a certain window of opportunity. Wherof decreasing penalty without any code achieving the limit
this window closes — e.g., when the fortress falls — thpenalty value. Fortunately the answer is the former, th@foro
information becomes worthless. An analogous situatiomiecc being a special case of Theorem 2 in [16] (a generalization of
when a wireless device is losing power or is temporarily imith the result for the expected-length penalty [17]). The doast
range of a base station; one can safely assume that the ¢harisehen how to find one of these optimal source codes given
when available, will transmit at the lowest (constant)di; parameter and probability measuré.
and will be lost after a nondeterministic time period. As in the linear case, a general solution foi (1) is not
Assume that the duration of the window of opportunity iknown for generalP over a countably infinite number of
independent of the communicated message and is memorylesgnts, but methods and properties for finite numbers ofteven
the latter being a common assumption — due to both is discussed in the next section — can be used to find
accuracy and expedience — of such stochastic phenomemgimal codes for certain common infinite-item distributso
Memorylessness implies that the window duration is disa Sectiorill, we consider geometric distributions and finalt
tributed exponentially. Therefore, quantizing time innterof Golomb codes are optimal, although the optimal Golomb code
the number of bits" that we can send within our window, for a given probability mass function varies accordingato
The main result of Sectidn]ll is that, fog (i) = (1—6)6* and

N t o
P(T'=t)=(1—a)a’, t=0,1,2,... a € Ry, Gk, the Golomb code with parametér is optimal,

with known positive parameten < 1. We then wish to Where

maximize the probability of success, i.e., the prob_abill'rtyt_ k = max (1, [—logy a — logy(1+6)]) .

the message length does not exceed the quantized window ) o )
length: In Section[IV, we consider distributions that are relatvel

light-tailed, that is, that decline faster than certain metric

Pn(X) < T] — iP(T — 1) Pa(X) < 1] distributions. 'If thgre is a nonnegative integesuch that for
— all 7 >r andi < j,
— Z(l — a)at . ZP(Z)ln(z)gt p(Z) 2 max p(j)7 Z p(k)ak_j
t=0 iex k1
= Zp(i) -(1—a) Z at then an optimal binary prefix code tree exists which consists
iex t=n (i) of a unary code tree appended to a leaf of a finite code tree.
o0 A specific case of this is the Poisson distributign,(i) =
= > p)a"?-(1-a)d> d Mie=/il, wheree is the base of the natural logarithra &
ieXx t=0 2.71828). We show that in this case the aforementiomeid
— Zp(i)an(i) given byr = max([2a\] — 2, [eA] — 1). An application, that

icx of minimizing probability of buffer overflow, as in [11], is
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considered in Section]V, where we show that the algorithm Two-Queue Implementation of Exponential Huffman
developed in [11] readily extends to coding geometric ar@oding: The two-queue method of implementing the Huffman
light-tailed distributions. Sectioh VI discusses the mmaxin algorithm puts nodes/items in two queues, the first of whech i
pointwise redundancy penalty, which has a similar solutianitialized with the input items (eventual leaf nodes) aged

for light-tailed distributions and for which the Golomb @d from head to tail in order of nondecreasing weight, and the

Gk with & = [—1/log,0] is optimal for with geometric second of which is initially empty. At any given step, a node
distributions. We conclude with some remarks on possibldth lowest weight among all nodes in both queues is at the
extensions to this work. head of one of the two queues, and thus two lowest-weighted

Throughout the following, a set or sequence of itenis) nodes can be combined in constant time. This compound node
is represented by its uppercase counterpsrtA glossary of is then inserted into (the tail of) the second queue, and the
terms is given in Appendik]il. algorithm progresses until only one node is left. This nade i

the root of the coding tree and is obtained in linear time.
Il. BACKGROUND: FINITE ALPHABETS The presentation of the algorithm in [23] did not include a

If a finite number of events comprige (i.e., | X| < c0), the formal proof, so we find it useful to present one here:
exponential penalty{1) is minimized using an algorithmrfdu ~ Lemma 1: The two-queue method using the exponential
independently by Hiet al. [18, p. 254], Parker [19, p. 485], combining rule results in an optimal exponential Huffmadeo
and Humblet [20, p. 25], [11, p. 231], although only the lasjiven a finite number of input items.
of these considered < 1. (The simultaneity of these lines of Proof: The method is clearly a valid implementation of
research was likely due to the appearance of the first papes exponential Huffman algorithm so long as both queues’
on adapting the Huffman algorithm to a nonlinear penaltgets of nodes remain in nondecreasing order. This is clearly
max;(p(i) + n(i)) for given p(i) € Ry, in 1976 [21].) We satisfied prior to the first combination step. Here we show; tha
will use this finite-alphabet exponential-penalty algumitin  if nodes are in order at all points prior to a given combinatio
the sections that follow in order to prove optimally for infen step, they must be in order at the end of that step as well, in-
distributions, so let us reproduce the algorithm here: ductively proving the correctness of the algorithm. It isiolis

Procedure for Exponential Huffman Coding (finite al- that order is preserved in the single-item queue, sinceswade
phabets): This procedure finds the optimal code whether  only removed from it, not added to it. In the compound-node
1 (a minimization of the average of a growing exponentialjueue, order is only a concern if there is already at least one
or a < 1 (a maximization of the average of a decaying exparode in it at the beginning of this step, a step that combines
nential). Note that it minimizeg{1), even if the “probatiés” nodes we call nodé_; and node _». If so, the item at the tail
do not add tol. We refer to such arbitrary positive inputs asf the compound-node queue at the beginning of the step was
weights denoted byw(i) instead ofp(i): two separate items, 5 andi_,, at the beginning of the prior

1) Each item: has weightw(i) € Wx, where X is the step. At the beginning of this prior step, all four items must

(finite) alphabet andVx = {w(i)} is the set of all such have been distinct — i.e., corresponding to distinct sets of
weights. Assume each iteinhas codeword:(4), to be (possibly combined) leaf nodes — and, because the algorithm
determined later. chooses the smallest two nodes to combine, neithgror

2) Combine the items with the two smallest weight§j) i_, can have a greater weight than either or i_,. Thus

andw(k) into one compound item with the combined— sincea - (w(i_3) + w(i—4)) < a- (w(i—1) + w(i_2)) and
weightw(j) = a-(w(j)+w(k)). This item has codeword the node with weight: - (w(i_3) + w(i_4)) is the compound
¢(j), to be determined later, while item is assigned node with the largest weight in the compound-node queue at
codeworde(j) = ¢é(j)0 and k codeworde(k) = é(j)1. the beginning of the step in question — the queues remain
Since these have been assigned in term& pf replace properly ordered at the end of the step in question. m
w(j) andw(k) with @(j) in Wx to form Wy. If a < 0.5, the compound-node queue will never have more
3) Repeat procedure, now with the remaining codewordisan one item. At each step after the first, the sole compound
(reduced in number by) and corresponding weights,item will be removed from its queue since it has a weight less
until only one item is left. The weight of this itemthan the maximum weight of each of the two nodes combined
is >, w(i)a™?. All codewords are now defined byto create it, which in turn is no greater than the weight of any
assigning the null string to this trivial item. node in the single-item queue. It is replaced by the new Ysole
This algorithm assigns a weight to each node of the resultisgmpound item. This extends o= 0.5 if we prefer to merge
implied code tree by having each item represented bycambined nodes over single items of the same weight. Thus,
node with its parent representing the items combined isto &ny finite input distribution can be optimally coded toK 0.5
subtree, as in Fid.]1: If a node is a leaf, its weight is givemsing atruncated unary codea truncated version of thenary
by the associated probability; otherwise its weight is defin code the latter of which has codewords of the fofid0 : j >
recursively as: times the sum of its children. This concept i$)}. The truncated unary code has identical codewords as the
useful in visualizing both the coding procedure and its atitp unary code except for the longest codeword, which is of the

Van Leeuwen implemented the Huffman algorithm in lineaiorm {1/*1=1}. This results from each compound node being
time (to input size) given sorted weights in [22], and thiformed using at least one single item (leaf). Taking limits,
implementation was extended to the exponential problem imformally speaking, results in a unary limit code. Formall
[23] as follows: this is a straightforward corollary of Theorém 2 in Secf{i®h |
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If « > 0.5, a code with finite penalty exists if and only Theorem 1:Fora € R, if
if Rényi entropy of ordem(a) = (1 + log,a) " is finite, as 1 B
shown in [16]. It was Campbell who first noted the connection 0F + 0" < a AR )
between the optimal code’s penalty, (P, N*), and Rényi ¢y 1. > 1 then the Golomb code /Gis the optimal code for

entropy Py. If no suchk exists, the unary code 1Gs optimal.
1 Remark:This rule for finding an optimal Golomb &5code
A N\ o
Ho(P) = 51082 Zp(z) is equivalent to
ieX
S Hy(P) = Lloead T pli) (1 Homa) k= max (1, [—logg a —logy(1 +6)1).
ate) logya ° iex This is a generalization of the traditional linear resulbieh

corresponds ta — 1. Cases in which the left inequality is
an equality have multiple solutions, as with linear codiseg,
Hya)(P) < Lo(P,N*) < Hygay(P) + 1 e.g., [26, p. 289]. The proof of the optimality of the Golomb

_ o . o ~code for exponential penalties is somewhat similar to that

which should not be surprising given the similar relatidpsh of [4], although it must be significantly modified due to the

between Huffman-optimal codes and Shannon entropy [2ébnlinearity involved.

which corresponds ta — 1 (a — 1) [8], [25]; due to this  Before proving Theorerfll 1, we need the following lemma:

correspondence, Shannon entropy is sometimes expressed 88mma 2: Consider a Huffman combining procedure, such

This relationship is

Hy(P). as the exponential Huffman coding procedure, implemented

using the two-queue method presented in the previous sectio

1. GEOMETRIC DISTRIBUTION WITH EXPONENTIAL just prior to Lemmdl. Now consider a step at which the
PENALTY first (single-item) queue is empty, so that remaining are onl

compound items, that is, items representing internal nodes
rather than leaves in the final Huffman coding tree. Then, in
po(i) = (1 —0)6" this final tree, the nodes corresponding to these compound
S ] . items will be on levels differing by at most one; that is, the
for parameteﬁ € (0, 1)._ This distribution arises in run-length ,g4es will form a complete tree. Furthermore,sifis the
coding among other circumstances [3], [4]. _number of items remaining at this point, all items that finish
For the traditional Ilngar pe_nalty, a Golomb code with; |evel Mog,n] appear closer to the head of the (second,
parameterk — or Gk — is optimal for 6% + ¢*+! < 1 < nonempty) queue than any item at leygig,n] — 1 (if any).
0k—1 + 0*. Such a code consists of a unary prefix followed  proof- [Lemmal2] We use an inductive proof, in which
by a binary suffix, the latter taking one &fpossible values. the pase cases of one and two compound items (i.e., internal
If % is a power of two, all binary suffix possibilities have thg,odes) are trivial. Suppose the lemma is true for every case
same length; otherwise, their lengthg) differ by at mostl  \ith 5, — 1 items forn > 2, that is, that all nodes are at levels
and)_, 2771 = 1. Binary codes such as these suffix codegog, (n— 1) or [log,(n — 1)], with the latter items closer to
are calledcompletecodes. This defines the Golomb code; fofhe head of the queue than the former. Consider now a case
example, the Golomb code fdr= 3 is: with n nodes. The first step of coding is to merge two nodes,
resulting in a combined item that is placed at the end of the
combined-item queue. Because it is at the end of the queue

Consider the geometric distribution

i p(i) c(i) in the reduced problem of size — 1, this combined node is
0 1-90 00 at level [log,(n — 1)| in the final tree, and its children are
1 (1-6)0 010 at level 1 + [logy(n — 1)] = [logyn]. If n is a power of

2 (1-0)¢* 011 two, the remaining items end up on levek,n = [log,(n —

3 (1-6)8° 100 1)], satisfying this lemma. If» — 1 is a power of two, they
4 (1-0)0* 1010 end up on levelog,(n — 1) = [log,n], also satisfying the
5 (1-0)° 1011 lemma. Otherwise, there is at least one item ending up alt leve
6 (1-0)0° 1100 [log,n] = [log,(n—1)] near the head of the queue, followed
7 (1-0)07 11010 by the remaining items, which end up at levébg,n| =

8 (1-0)0° 11011 |log,(n —1)]. In any case, the lemma is satisfied foitems,

9 (1-0)6° 11100 and thus, inductively, for any number of items. [

This lemma applies to any problem in which a two-queue
Huffman algorithm provides an optimal solution, including
where the space in the code separates the unary prefix frifr@ original Huffman problem and the tree-height problem of
the complete suffix. In general, codewojdor Gk is of the [19]. Here we apply the lemma to the exponential Huffman
form {1L9/k10b(j mod k, k) : j > 0}, whereb(j mod k, k) is  algorithm to prove Theorefd 1:

a complete binary code for thg — k|j/k| + 1)th of k items. Proof: [Theoren1] We start with an optimal exponential

It turns out that such codes are optimal for the exponentiduffman code for a sequence of similar finite weight distri-
penalty: butions. These finite weight distributions, called-reduced
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Fig. 1. Formation of a Golomb code using a code forrafreduced source. In this illustratiomp, = 17 and k = 5, and smaller weights are pictorially
lower. Weights are merged bottom-up, in a manner consistéhtthe exponential Huffman algorithm, first in separateiftated) unary subtrees, then in a
(five-leaf) complete tree.

geometric sourcedV,,, are defined as: For k£ = 1 (including all instances of the degenerate<
; . 0.5 case and all instances in whidil (2) cannot be satisfied),
(1-0)8",  0<i<m hi that the optimal tree is the truncated t
wn(@) 2 (1= 0)ab? . this proves that the optimal tree is the truncated unary. tree
0, m<i<m+k. Considering now only: > 1 for m > k — 1, the two-queue
1-ab algorithm assures that, when the problem is reduced to wgeigh
wherek is as given in the statement of the theorem,1df  {w_, (i)}, all corresponding nodes are in the combined-item
no suchk exists. queue. Lemm@]2 thus proves that these nodes form a complete
Weights w,, (0) through w,,(m) are decreasing, as arecode. The overall optimal tree for any-reduced code with
wp, (m + 1) throughw,, (m + k). Thus we can combine the;, > k — 1 is then a truncated Golomb tree, as pictorially

nodes with weightsv,,,(m) andw,, (m + k) if represented in FigJ]1, where = 17 andk = 5. Note that
(1— §)agmt* ) m + 1 is the number of leaves in common with V\_/hat we call
YT <(1-60)m" the “Golomb tree,” the tree we show to be optimal for the
original geometric source. The number of remaining leames i
and (1 — B)apm+h—1 the truncated tree i&, which is thus the number of distinct
# >(1-60)0" ork = 1. unary subtrees in the Golomb tree.
These conditions are equivalent to the left and right sides,Fig.[ represents both the truncated and full Golomb trees,
respectively, of[(R). Thus the combined item is along with how to merge the weights. Squares represent items
to code, while circles represent other nodes of the treell&ma
(1 —0)ad™ ; .
Wip—1(M) = ~——"7— weights are below larger ones, so that items are merged as
1~ af pictured. Rounded squares are itemst 1 throughm + k,
and the code is reduced to the,, ; case. the items which are replaced in the Golomb tree by unary
After merging the two smallest weights fon = 0, the subtrees, that is, subtrees representing the unary cotler Ot
reduced source is squares are items throughm, those corresponding to single
_ (1 —0)ab? _ items in the integer code. White circles are the leaves used f
woi (i) = G 0< i<k -1 the complete tree.
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Fig. 2. Redundancy of the optimal code for the geometricriligion with the exponential penalty (parametéx Ra(Nga, Py) = La(Py, Ny ) —
H(a)(Po), Wherea(a) = (1+ logya)~t, Py is the geometric probability sequence impliedyand N;  is the optimal length sequence for distribution
Py and paramete:. '

It is equivalent to follow the complete portion of the codehe first and the last of the expressions[ih (3) is
with the unary portion — as in the exponential Huffman tree L
in Fig.[ — or to reorder the bits and follow the unary portion — n* (i) — N n*(d)
Yo p@a™ @ =Y w(ia
1=0

with the complete portion — as in the Golomb code [3]. The —~

latter is more often used in practice and has the advantage oo - ‘ m+k .
of being alphabetic, that is; > j if and only if (i) is = > pi)a” D = > wp(i)a” .
lexicographically after(y). i=m+1 i=m+1

The truncated Golomb tree for amy > k — 1 represents a aq ,,, —, oo for m > k — 1. the sums on the right-
code that has the same pena!ty for thereduced d_istribution hand side approach: the first is the difference between a
as does the Golomb code with the corresponding geomeijigit (an infinite sum) and its approaching sequence of finite
distribution. We now show that this is the minimum penalty,; s all upper bounded ifil(3), and each of the terms in
for any code with this geometric distribution. the second summation is upper-bounded by a multiplicative

Let Nj, (or N* if there is no ambiguity) be codewordconstant of the corresponding term in the first. (In the tatte
lengths that minimize the penalty for the geometric distittn ~ finjte summation, terms ar@for i > m + k.) Their difference
(which, as we noted, exist as shown in Theorem 2 of [16pherefore also approaches zero, so the summations on the
Let N,, bg codewqrd Iengt.hs for thex-reduced distribution |eft-hand side approach equality, as do thosedn (3), and the
found earlier; that isp., (i) is the Golomb length foi < m  Golomb code must be optimal. =
andn,, (i) = n, (i — k) for the remaining values. Finally, let |t js equivalent for the bits of the unary portion to be
N be the lengths of the code implied by — oo, that is, complemented, that is, to ugeli/*/ 16(j mod k, k) : j > 0}

the lengths of the Golomb codekGThen (as in [4]) instead of{ 1L//50b(j mod k, k) : j > 0} (as in
- - [3]). It is also worth noting that Golomb originally propakse
lo Do D < 1o Dates® his code in the context of a spy reporting run lengths; this
Ba ;p( ) = %% ;p( ) is similar to Rényi's context for communications, related
m+k Sectior] as a motivation for the nonlinear penalty witk: 1.

= log, Z Wy (1)a™m D 3 A little algebra reveals that, for a distributioR; and a
1=0

'—+k Golomb code with parametér (lengthsNy,),

< log, Y wp(i)a™ @ > e
; La(Po,Ni) = log, Y (1 -6)gial =5 1+9)
i=0 (4)
where the inequalities are due to the optimality of the respe = g+log, (1 + (T:i)ei)

tive codes and the facts that,, (i) = p(i) for ¢ < m and
where g = |logy k] + 1 and z = 29 — k. Therefore,

0 o il Theorem[lL provides thé that minimizes[(#). Ifa > 0.5
-\ i+jk j+1 __ +1 . . ’
W (1) = Z(l = 0)0" T = Zaj p(i+ jk) the corresponding Rényi entropy is
=0 =0

1-46

Ha(o) (o) = loga (7 —geraira (5)

for i € (m,m + k]. The difference between the exponent of
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0.12

subtree, while the remaining tree can be coded via the Huffma
algorithm. Once again, this has to be modified for exponkntia

penalties.
We wish to show that the optimal code can be obtained

008 1 when there is a nonnegative integesuch that, for allj > r

% o

. andi < 7,

*ZQUDG*
\Q:T . . - k—j

p(i) > max | p(j), > p(k)a
k=j+1

The optimal code is obtained by considering the reduced
alphabet consisting of symbols1,...,r + 1 with weights

L] op(i), i<r
wl) = { Dt p(k)a*=", i=r+1. (6)

Fig. 3. Redundancy of the optimal code for the geometriaitigion with
the traditional linear penalty. . . .
Apply exponential Huffman coding to this reduced set of

weights. For itemg) throughr, the Huffman codewords for
where we recall that(a) = (1+logya) . (Again,a < 0.5 is the reduced and the infinite alphabets are identical. Edwdr ot
degenerate’ an 0pt|ma| code being unary with no Correspoﬁémi > r has a codeword ConSiSting of the reduced codeword
ing Rényi entropy.) for itemr+1 (which, without loss of generality, consists of all

In evaluating the effectiveness of the optimal code, orleS) followed by the unary code far—r —1, that is,i —r — 1
might use the following definition ofiverage pointwise re- ones followed by a zero. We call such codesary-endedA

dundancy(or just redundancy. pictorial example is shown in Fidl 4 for a problem instance
B R for which r = 12.
Ro(N,P) = Lo(P,N) — Hya)(P). Theorem 2:Let p(-) be a probability measure on the set of

nonnegative integers, and lebe the parameter of the penalty
to be optimized. If there is a nonnegative integesuch that
forall j > r andi < j,

For nondegenerate values, we can plot tﬁg(Ng,a,Pg)
obtained from the minimization. This is done for> 1 and
a < 1 in Fig.[2. Note that as — 1, the plot approaches the
redundancy plot for the linear case, e.g., [4], reproduced a ) _

Fig.[3. p(i) > p(j) )
In many potential applications of nonlinear penalties —
such as the aforementioned for> 1 [10]-[12] anda < 1 and
(Sectiorfl) —a is very close tdl. Since the preceding analysis _ ke

shows that the Golomb code that is optimal for giveand 6 p(i) 2 Z p(k)a (8)
is optimal not only for these particular values, but for agan =i+l
of a (fixing 6) and a range ob (fixing a), the Golomb code then there exists a minimum-penalty binary prefix code with

for the traditional linear penalty is, in some sense, muchemo ! - ) ,
. . every codeword > r consisting ofj —x 1’s followed by one
robust and general than previously appreciated.

0 for some fixed nonnegative integer
Proof: The idea here is similar to that for geometric
distributions, to show a sequence of finite codes which inesom
Abrahams noted that, in the linear case, slight deviati@@nse converges to the optimal code for the infinite alph&bet
from the geometric distribution in some cases does not ahartbis case we consider the infinite sequence of codes impiicit
the optimal code [27, Proposition (2)]. Other extensions tbe above; for a givem» > —1, the corresponding codeword
and deviations of the geometric distribution have also beareights are
considered [28]-[30], including optimal codes for nonljna
alphabets [27], [29]. Many of these approaches can be adlapte (i) = { p(7), 1<r+m+2
to the nonlinear penalties considered here. However, @ thi ™"/ — | Yo2, ., op(k)a """ i=r+m+2.
section we instead consider another type of probabilityridis
bution for binary coding, the type with a light tail. Itis obvious that an optimal code for eaghreduced distribu-
Humblet's approach [31], later extended in [32], uses tHi®n is identical to the proposed code for the infinite alpttab
fact that there is an optimal code tree with a unary subtrégcept for the itemr + m + 2, which is the code tree sibling
for any probability distribution with a relatively lightilaone of itemr +m + 1.
for which there is an such that, for all; > r andi < j, For a« < 1, we show, as in the geometric case, that
p(i) > p(j) and p(i) > Z;ij+1p(k). Due to the additive the difference between the penalties for the optimal and the
nature of Huffman coding, items beyondform the unary proposed codes approachesln this case, the equivalent of

(o]

IV. OTHER INFINITE SOURCES
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Fig. 4. Formation of a unary-ended infinite code using a Hafiriike code. (Smaller weights are pictorially lower.) \Qleis are merged bottom-up, in a
manner consistent with the exponential Huffman algoritfinst in the (truncated) unary subtree, then as in the exg@idruffman algorithm.

inequality [3) is m + 2) in terms ofp(r +m + 2):
o o w(r+m+2) = ap(r+m+2)+a’p(r+m+3)+
log, > pi)a™ @ < log, S p(i)am=® = N imr—me
2 2 > pga
r+m-42 . i=r+m-+4
= log, Y, wm(i)a™? (9 < (@®+a)p(r+m+2)+a’p(r+m+3)
2 < (20> +a)p(r+m+2)
< Na™ @ : . i
s logg ; wm(i)a where the first equality is due to the definition®f,(-), the

first inequality due to[(8), and the second inequality du&fo (

o . Thusw,, (r +m + 2) has an upper bound ¢2a? + a)p(r +
where in t'h|s casaloo(z) Qenotes a codeworq of the proposegn +2) for all m > —1. In addition, since the proposed code
codeny, (i) = ne (i) fori < r+m+2andn,, (i) = ne(i—1)

has a finite penalty — identical to that of any reduced code

for i = r +m + 2, and, againp”(-) denotes the lengths of _ yhe ontimal code has a finite penalty, and the sequence
codewords in an optimal code. The corresponding d|fferen8f: its terms — each one of which has the forfr + m +

between the exponent of the first and the last expression529 n*(r+m+2) __ approache$ asm increases. Thus (r+
. m

@ is m+2)a™ ("+™+2) approaches as well. Due to the optimality
of n*(+), Wy, (r+m+2)a™ ("+"+2) serves as an upper bound

N L for 320, 1 iap(i)a™ ), and thus both terms approach
ZP(ZMH W Z Wi (1)a™ @ As with a < 1, then, the terms in{9) approach equality for
=0 0o i=0 m — oo, showing the proposed code to be optimal. =
= Z p()a™ D — wp, (r +m + 2)a” THT), The rate at whichp(-) must decrease in order to satisfy
i=r+m42 condition [8) clearly depends on. One simple sufficient

(10)  condition — provable via induction — is that it satigfyi) >
As m — oo, both terms in the difference on the second line ofy(; + 1) + ap(i + 2) for largei. A less general condition is
(L0) clearly approach, so the terms in({9) approach equalitythat p(i) eventually decrease at least as quicklygasvhere
showing the proposed code to be optimal. g = (/1+4/a —1)/2, the same ratio needed for a unary
For ¢ > 1, the same method will work, but it is not sogeometric code fof = ¢, as in [2). The ratigy is plotted in
obvious that the terms in the difference on the second line leig. [3.
(I0) approacty. Let us first find an upper bound far,, (r + Fora — 1, these conditions approach those derived in [31].
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0.2197. ... After using the appropriate Huffman procedure on
each reduced source df weights, we find that the optimal
code fora = 1 has lengthsaV = {1,2,3,4,5,6,...} — those

of the unary code — while the optimal code for= 2 has
lengthsN = {2,2,2,3,4,5,...}.

It is worthwhile to note that these techniques are easily
extensible to finding an optimal alphabetic code — that ig on
with ¢(4)’s arranged in lexicographical order — for> 1. One
needs only to find the optimal alphabetic code for the reduced
code with weights given in equatioil] (6), as in [18], with
codewords foi > r consisting of the reduced code’s codeword
0al i for r+1 followed byi—r—1 ones and one zero. As previously
mentioned, Golomb codes are also alphabetic and thus are
03 s ‘ ‘ . optimal alphabetic codes for the geometric distribution.

0.9

0.8 q

0.7

0.6

05

V. APPLICATION: BUFFER OVERFLOW
Fig. 5. Ratiog, probability distribution fall-off sufficient for the optiality L . .
of a unary-ended code. Note thitg = £ 1 (1 + /5), the golden ratio, The application of the exponential penalty in [11] concerns

ata = 1. minimizing the probability of a buffer overflowing. It reqes
that each candidate code for overall optimality be an odtima

. code for one of a series of exponential parameteswhere
The stronger results of [32] do not easily extend here due P b w

o : a-> 1). An iterative approach yields a final output code by
to the nonaditivity of the exponential penalty. An atterapt noting that, for the overall utility function, each candieaode
such an extension in [33, pp. 103-105] gives no criteria fc?g ' '
success, so that, while one could produce certain codewo[)q -
for certain codes, one might fail in producing other codelgor
for the same codes or for other codes. Thus this extensio
not truly a workable algorithm.

Consider the example of optimal codes for the Poiss

distribution,

code yields the same value as the prior candidate code, and
NHR& can be shown to be the optimal code. This application of
exponential Huffman coding can, using the above techniques
Y& extended to infinite alphabets.

A In the application, integers with a known distributidn
pa(i) = - arrive with independent intermission times having a known
) , v . ) . probability density function. Encoded bits are sent at a&giv
How does one find a suitable value fe(as in Sectiol IV) in 410 *with bits to be sent waiting in a buffer of fixed size.
such a case? It has been shown that [e| —1yieldsp(i) > constant, represents the buffer size in bits, random variable
p(j) for all j > r andi < j, satisfying the first condition of . represents the probability distribution of source inteiger
Theoreni P [31]. Moreover, if, in additio, > [2aA] —1 (and termission times measured in units of encoded bit transomiss

thusj > aX — 1), then time, and functionA(s) is the Laplace-Stieltjes transform of

. k e M [ a) a2\ T, E[e—*T].

2 Ptk = v+l " G+ +2) L When the integers are coded using = {n(i)}, the
=t 9o probability per input integer of buffer overflow is of the erd
< () [a_)‘ + _atA” 4. } of e=*"%, wheres* is the largest such that

i+l (j+1)?
a) f(N,s) <1
— N Ea
B (])1 _ ax where .
ik -\ sn (i
< p(j) J(N,s) & A(s) Zp(z)e (@, (11)
< p(i). =0

The previously known algorithm to maximize* is as
Thus, since we considgr> r, r = max([2a\] —2, [eA] —1) follows:
is sufficient to establish ansuch that the above method yields Procedure for Finding Code with Largest s* [11]
the optimal inﬁnite-alphapet code. 1) Choose any € R, .
In order to find the optimal reduced code, use 2) j 0.
i \ r i 3) j—j+1L _
woa(r+1)= Y pk)ab" =a "M = " p(k)a . 4) Find codeword lengthd; minimizing 3_, p(i)e® -1,
k=r+1 k=0 5) Computes; £ max{s € R: f(N;,s) < 1}.
For example, consider the Poisson distribution wite: 1. We ~ 6) If s; # s;_; then go to step 3; otherwise stop.
code this for bothu = 1 anda = 2. For both valuesy = 2, We can use the above methods in order to accomplish step
so both are easy to code. For= 1, w_1(3) =1 —2.5¢"1 ~ 4, but we still need to examine how to modify steps 1 and 5
0.0803 ..., while, fora = 2, w_1(3) = 0.25¢ — 1.25¢~! ~ for an infinite input alphabet.

oo
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First note that, unlike in the finite case; < oo, that is, Proof: The number of codes that can be generated in the
there always exists as* € R, such that, for alls > s*, course of running the algorithm should be bounded so that
f(N,s) > 1. For any stable system, the buffer cannot receithe algorithm is guaranteed to terminate. Optimality foe th
integers more quickly than it can transit bits, so there is agorithm then follows as for the finite case [11]. As in the
positive probability thaf?’[T" > 1]. Thus the Laplace-Stieltjesfinite case,s;+1 > s; for j > 1 (but notj = 0) due to step
transform A(s) exceedscie® for some constant; > 0. 5 [f(N;,s;) <1], step 4 [f(Nj41,s;) < f(Nj,s;)], and the
Also, without loss of generality, we can assume th@j is definition of s, .
monotonic nonincreasing and an optimali) is monotonic  In the case of a geometric distribution, ea€his a Golomb
nondecreasing. This monotonicity means th&) > log,i, code G;; for some positive integek;. Clearly, if we choose
and there is no exponential basg and offset constant; sy as detailed above, it is the greatest value gfbeing either
for which >27° p(i)es") < a5t for all s € Ry. Thus optimal or unachievable due to its derivation as a bound of
the summation in[{11) must increase superexponentialty, athe problem. Since & (with lengthsN;) is the optimal code
multiplying the A(s) and summation terms, there is asuch for the code with exponential bage= e%-1, (2) means that
that (N, s) > 1 for s > s*. gFi 4 gkitl < e=si-1 < gFi—1 4 g% and thus

For step 1, the initial guess proposed in [11] is an upper & s e ki1
bound for all possible values of*. The Rényi entropy of? (L+0)07 <em™ < e <(1+0)0%
is used to find an initial guess using and, sincef < 1, we havek; — 1 < k; (or, equivalently,

- 1+logye® - k; < kp) for all j > 1. Therefore, there are only; possible
N T .\ sn(i) codes the algorithm can generate.
Als) (;p(z) ’ ) s Al) ;p(z)e ' In the case of a distribution with a lighter tail, the minimum
(12) r of Theoreni R increases with each iteration after the first, an
and choosingsy as the largest such that the left term of the firstr; (corresponding t®,) upper bounds the remaining
(12) is no greater than one. Thusg, > s* for any value ofs* r;. Thus all candidate codes can be specified by their first

corresponding to step 5. r1 codeword lengths, none of which is greater than The
This technique is well-suited to a geometric distributifim, number of codes is then bounded for both cases, and the
which entropy has the closed form shown in equatidn (5), stgorithm terminates with the optimal code. [ ]
1-0
A(s) - < f(N,s). VI. REDUNDANCY PENALTIES

(1 — f1+logger) 1) HHIoE2" .
It is natural to ask whether the above results can be extended

However, a general distribution with a light tail, such as thtg other penalties. One penalty discussed in the literagtreat
Poisson distribution, might have no closed form for thistu of maximal pointwise redundancy [34], which is

One solution to this is to use more relaxed lower bounds on . R , )
the sum — such as using a partial sum with a fixed number R*(N, P) = félg[”(’) + log,p(i)]

of terms — vyielding looser upper bounds fet. Another

approach would be to note that, because of the light tail, th&'€re We Uﬁﬁup th)n Wr? are noéassmlj_re_d t?eheX|stence Ofall
infinite sum can usually be quickly calculated to the prexcisi maximum. This can be shown to be a limit of the exponentia

of the architecture used. Note, however, that no matter wift>€: 35 in [23], allowing us to analyze its minimizatiomgsi
the technique, the bound must be chosen so thais an the same techniques as exponential Huffman coding. This

real number and not infinity. Partial sums may be refined {ignit can be shown by definingth exponential redundancy

accomplish this. as follows:

In calculating f(N,s) for use in step 5, the geometric R4(N,P) £ llogQZp(l-)zd(n(i)ﬂoggp(i))
distribution has the closed-form value f@robtainable from e
equation[(#), while the other distributions must instedy o@ 1 1t dodn()
approximations off. As before, this is easily done due to the = 310g2 ZP(Z) 2 :
light tail of the distribution. Alternatively, a partial suand ex

a geometric approximation can be used to bofi(ly, s) and ThusR*(N, P) = limy—.. R4(N, P), and the above methods
thus s*, and these two bounds used to find two codes. If tlelould apply in the limit. In particular:
two codes are identical, the algorithm may proceed; otterwi  Theorem 4:The Golomb code & for k = [—1/log,0] is
we must roll back to the summation and improve the boundgtimal for minimizing maximal pointwise redundancy By.
until the codes are identical.
These variations make the steps of the algorithm possible, Proof:
but the algorithm itself must also be proven correct with the Case 1:Consider first when-1/log,6 is not an integer. We
variations. show thatk = [—1/log,0] is optimal by finding aD such
Theorem 3:Given a geometric distribution or an input disthat, for alld > D, the optimal code for theth exponential
tribution satisfying the conditions of Theordrh 2 fer= e, redundancy penalty is % For a fixedd, (2) implies that such
where sg is an upper-bound or*, the above Procedure fora code should satisfy

Finding Code with Largest* terminates with an optimal code.
g 9 P (91+d)k + (91+d)k+1 < % < (91+d)k—1 + (91+d)k’ (13)
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Maximal pointwise redundancy of the optimal maximedundancy code for the geometric distribution, solid ljwdiscontinuities represented by

dashed); optimatith exponential redundancy for the geometric distributidotted ford = {1, 2,4, 16, 256, 65536}, from lowest to highest.

and thus we wish to show that this holds for dll> D.

Considerk = [—1/log,#]. Clearly, & > —1/log,0, or,
equivalently, )
ok < . 14
<3 (14)
Now consider
1

D==1+ 1+ (k—1)log,0

so that(k — 1)log,0 € (—1,0] and thereforeD > 0. Taken
together with the fact that € (0,1), (I4) yieldsg* < 2—4
and (1 + §179)9% < 20% < 1. Multiplication yields the left-
hand side of [(1I3) for anyl > D. For any suchd, algebra
easily shows that we also have the inequalitg* 1)< > 2,
yielding

(0141 4 (91 )k] 20 = 1

_(29k71)1+d + %(29k)1+d

— DN

_ _(29k)1+d(9—1—d_,’_1)

N — DN

_ _(29k—1)1+d(1+91+d)
> 1

This is equivalent to the right-hand side of inequalify] (1&)
the values implied by the definition adR,;(N, P). Then G:

is an optimal code forl > D, and thus for the limit case of

maximal pointwise redundancy.
Case 2:Now consider when-1/log,0 is an integer. It
should be noted that, for the traditional (linear) pendhgse

are precisely thek values that Golomb considered in hi

This is of particular interest for the value @fmaximizing
pointwise redundancy for Bat #’, whered’ € (§'/1°8229 ¢),
allowing us to use the right limit of. Let i** £ 2[log2k] _ 1

the smallesti which has codeword length exceeding the
codeword length for itend. Clearly the pointwise redundancy
for this value is greater than that for all items with< i**,
since they are one bit shorter but not more than twice as
likely. Similarly, items in (i**, k) have identical length but
lower probability, and thus smaller redundancy. For itenth w

i > k, note that the redundancy of items in the sequdnce+

k,7 + 2k,...} for any j must be nonincreasing because the
difference in redundancy is constant yet redundancy is Mppe
bounded by the maximum. Thug* maximizes pointwise
redundancy for @ at ¢'.

We know the pointwise redundancy of* for Gk at 6,
although we have yet to show théat* yields the maximal
pointwise redundancy for &at 6 or that G minimizes max-
imal pointwise redundancy. However, for any code, inclgdin
the optimal code, as a result of pointwise continuity,

sup [n(i) +logape(i)] = n(i™) + logype(i™*)

1€EX 0
= lm[n(i™) + logyper (i)
From the above discussion, it is clear that the right-hand
side is minimized by the Golomb code with= —1/log,0,
so, because the left-hand side achieves same value with this
code, the left-hand side is indeed minimized by.@hus

ghis code minimizes maximal pointwise redundancyéor he

original paper [3] and that they are local infima for th&Oresponding maximal pointwise redundancy is

minimum maximal pointwise redundancy functiondnas in
Fig.[d. Here we show they are local minima.

Sincef = 0.5 is a dyadic probability distribution and thus
trivial, we can assume tha# > 0.5. We wish to show that
optimality is preserved in these right limits of Case 1. Not¢here Nj* =

that, for eachi with fixed IV,

})i,% [n(i) + logyper (1)) = n(i) + logype (7).

max;[ng* (i) + logyps(i)]
= n;*(gﬂogz/ﬂ — k) + logypg (21082F1 — k)
= [logok] + 1+ logy(1 — 6) + (218K — k)logy6

{ny*(i)} is defined as the lengths of a code
minimizing maximal pointwise redundancy. Note that this is

the redundancy for all items = 2/1°#2k1 4 jk with integer
j> 1. n



IEEE TRANSACTIONS ON INFORMATION THEORY 12

It is worthwhile to observe the behavior of maximal point- For a Poisson random variable= [e\] — 1 satisfies this
wise redundancy in a fixed (not necessarily optimal) Golomdmndition, since, for < r < j, p(:) > p(r) (as in [31]), and
code with length distributionV,. The maximal pointwise

) J+1 . r+1 . . .
redundancy p(f) = —=—=p(i+1) = ——=p(+1) = ep(j+1) > 2p(j+1).
R*(Nk, Py) = sup [n(i) + log,pe (i)
( ) iGXx[ ® 2P0 1) Thus such a random variable can be coded in this manner.

(2-1/(k=1) 2=1/k] __ yntil  exceed2~1/*, after which there alternative methods. One simple rule is that any code for

is no maximum, that is, pointwise redundancy is unboundethich p(i) < 27'p(0) for all i > 0 will necessarily
This explains the discontinuous behavior of minimum maximBave n(0) + log;p(0) minimized by letting n(0) = 1,
redundancy for an optimal code as a functiorfpfilustrated and this will be the maximum redundancy if(i) = i —
in Fig. @, where each continuous segment corresponds toladn general. For example, a unary tree optimizes =
optimal code forf € (2-1/(k=1) 2-1/k]. {0.6,0.15,0.15,0.0375,0.0375, . . .}, sincelog,1.2 ~ 0.263 is
Note also the oscillating behavior &1 1. We show in @ lower bound on maximal pointwise redundancy for any code
Appendix( thatlim infg;; R*(N;*, Py) = 1 — log,log,e and given p(1) = 0.6, and this bound is achieved for the unary
limsupy,; R*(N;*,Py) = 2 — logye, and we characterize code. If viewed as a rule for a unary subtree, this is loosan th

this oscillating behavior. This technique is extensiblotoer the above, since, unlike linear and exponential penalties,
redundancy scenarios of the kind introduced in [23]. all subtrees _of the subtree need be optimal. Other relaxstio
For distributions with light tails, one can use a techniquedn be obtained, although, as they are usually not needed, we
much like the technique of Theordth 2 in Secfioh IV. First nof@® not discuss them here.
that this requires, as a necessary step, the ability to eanst
a minimum maximal pointwise redundancy code for finite
alphabets. This can be done either with the method in [34] or
any of those in [23], the simplest of which uses a variant of
the tree-height problem [19], solved via a different extens
of Huffman coding. Simply put, the weight combining rule
rather thanw(j) + w(k) or a - (w(j) + w(k)), is

VII. CONCLUSION

The aforementioned methods for coding integers are ap-
plicable to geometric and light-tailed distributions wigx-
ponential and related penalties. Although they are notctlire
applications of Huffman coding, per se, these methods are
w(5) = 2 - max(w(j), w(k)). (15) derivgd from Fhe properties Qf ggneralizations of the Huaiffim
algorithm. This allows examination of subtrees of a propose
This rule is used to create an optimal code with lengthsptimal code independently of the rest of the code tree, and
N for W) £ {p(0),p(1),...,p(r),2p(r + 1)}, assuming thus specification of finite codes which in some sense coeverg
a unary subtree for items with index> r (and no other to the optimal integer code. Different penalties — egdz;) =
items) is part of an optimal code tree. As in the coding? implying the minimization of /5=, p(@)n(i)2 — do not
method corresponding to Theoréin 2, the codewords for ite@gare this independence property, as an optimal code tthe wi
0 throughr of this reduced code are identical to those ddptimal subtrees need not exist. Thus finding an optimal code
the infinite alphabet. Each other iten> r has a codeword for such penalties is more difficult. There should, howeber,

consisting of the reduced codeword fo# 1 followed by the cases in which this is possible for convexwvhich grow more
unary code fori —r — 1, that is,i —r — 1 ones followed by sjowly than some exponential.

azero. N _ _ - Another extension of this work would be to find coding
A sufficient condition for using this method is finding an 5gorithms for other probability mass functions under tba-n
such that linear penalties already considered, e.g., to attempt écthus
for all i <7, p(i) > p(r) techniques of [33, pp. 103-105] for a more reliable alganith

Other possible extensions and generalizations involviauwer

) . , of geometric probability distributions; in addition to tlme
forall j > r, p(j) > 2p(j + 1). we mentioned that is analogous to Proposition (2) in [2&ré¢h

For suchj, pointwise redundancy is nonincreasing along @re others in [28]—{30]. Extending these methods to nonbina

and

unary subtree, as codes should also be feasible, following the approaches in
[27] and [32]. Finally, as a nonalgorithmic result, it migbe
n(j) +logop(j) = n(j+1)+logy(p(4)/2) worthwhile to characterizell optimal codes — not merely
> n(j+1)+logyp(y +1). finding an optimal code — as in [26, p. 289].

The aforementioned coding method works because, for each

7, an optimal subtree consisting of the items with index j ACKNOWLEDGMENTS

and higher hasi(i) = n(j) — j + i; this subtree is optimal

because the weight of the root nodeanfy subtree cannot be  The author wishes to thank the anonymous reviewers, David
less thar2p(). A formal proof, similar to that of Theorefd 2, Morgenthaler, and Andrew Brzezinski for their suggestions

is omitted in the interest of space. improving the rigor and clarity of this paper.
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APPENDIX |
OPTIMAL MAXIMAL REDUNDANCY GoLOMB CODES FOR

LARGE 6 _
. . . R(Ne,lv P9)
Let us calculate optimal maximal redundancy as a function

of # > 0.5:
max; nj* (1) + logape (i)

13

Contrast this with the periodicity of the minimumverage
redundancy for a Golomb code: [37]

= 1 —logylogye —logye +

1*<10g2(*ml )) 1
082 log,6

SRR ) o(1 - 0)
= 1+{10g ———‘—1- . _ N _
2 o9 where N} | is the optimal code for the traditional (linear)
log, (1 — )+ penalty.
o 1oz~ 1] _ [~ "D log,0
og
1 ’ APPENDIX I
= 1= [_10&9 log, 0+ GLOSSARY OF TERMS
log, (__1(1)790 Notation ~ Meaning
[103; (7& 1*1"% (1) a Base of exponential penalty
2177 st o femf b(x, k) (z + 1)th codeword of complete binary code

[10g2 (_101;29)—‘ — log, (_@)

= 2+log, —hlag;ee) - F@ ol
91— {logs(~ g59)) _ <10g2 (‘@)%

o
where(z) denotes the fractional part of i.e., (z) £ 2 |z|,
&
G

since ) )
e~y = [ (15|

for & > 0.25 (and thus ford > 0.5). Using the Taylor series f,(P)
expansion about = 1, we find

o8 (~ogag ) = om0z (1-0)+0((1-0))

wheree is the base of the natural logarithm. Additionally,

i)

¥

7 mod k
1 Lo(P,N)
— | ———|logy,f =1+ O(1 —0). )
o | 0 =1+ 001 -0 (i)
Note that this actually oscillates betwekand1+(1—60)log,e N(T)

in the limit, so this first-order asymptotic term cannot be ()
improved upon. However, the remaining terms NG

o 1
5 _ ol —{loga(~ ) _ <1O (__>> 16

oscillate in the zero-order term. Assigninge =
(log,(—1/log,0)), we find that [Ib) achieves its minimum (75 ,(i))
value, 0, at 0 and 1. The maximum point is easily N*
found via a first derivative test. This point is achieved at (Vg ,)
x = 1—log,log,e, at which point[(IB) achieves the maximum ng , ;(4)
valuel — log,e + log,log,e. Thus, gathering all terms,

lim inf ¥ (N§™, Py) = 1 = logslogpe = 0.4712336270.., No.aa

timsup B (N, Fa) = 2 = logye = 05573049591 .., n**(0)
and, overall, N
R*(N,y*,Py) = 3 —logylog,e — o()

— (logy(— =L 1 p(i)
ol (loga(— 15358)) _ 1 _
’ 082 log,0 +

01— 9).

This oscillating behavior is similar to that of the average
redundancy of a complete tree, as in [35] and [36, p. 192].

with & items (i.e., the order-preserving
[alphabetic] code having the firgf'og:*1 — &
items with length|log, k| and the last
2k — 2/leg2k1 jtems with length[log, k1)
Codeword (for symbol)
Code{c(i)}
Base of the natural logarithne & 2.71828)
Golomb code with parametér, one of the
form {1U/%10b(j mod k, k) : 5 > 0}
Rényi entropy(1 — )~ Hogy > c 1 p()”
(or, if & € {0,1, 00}, the limit of this)
Index of the codeword that, among a
given code’s inputg € X', maximizes
pointwise redundancy; (i) + log,p(i)
J—kLi/k)
Penaltylog, >, 1 p(i)a™?
Length of codeword (for symbot)
{n(i)}, the lengths for a given code
Length of codeword of an optimal code
minimizing maximum redundancy fdi/’ (")
{n{")(4)}, the lengths of an optimal code
minimizing maximum redundancy fai’ (")
Length of codeword of an optimal code
for an exponential penalty,
(...If @ anda are specified)
{n*(i)}, the lengths of an optimal code
(...If @ anda are specified)
Length of codeword of an optimal code
minimizing dth exponential redundancy
{n%.4.4(i)}, the lengths of an optimal code
minimizing dth exponential redundancy
Length of codeword of an optimal code
minimizing maximum redundancy
{n**(i)}, the lengths of an optimal code
minimizing maximum redundancy
Order of- asymptotic complexity
Probability of input symbof
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continued
Notation Meaning
(po(i)) (...for geometric distwith parametep)
(px(2)) (...for Poisson distwith parameter\)
P {p(4)}, the input probability mass function
(Py) (...for geometric distwith parameten)
Py) (...for Poisson distwith parameter\)
Ra(N,P) | La(P,N) — Hyq)(P), the average
pointwise redundancy
R4(N,P) | d 'log, Siew p(7)24n (D) +logap(0))
the dth exponential redundancy
R*(N, P) | max;cx[n(i) + log,p(7)], the maximum
pointwise redundancy
R The set of real numbers
Ry The set of positive real numbers
S0 Upper bound ors*
s* Ina for a corresponding to optimal coding
for buffer overflow
w(7) Weight (for symbol)i
W {w(i)}, the set of weights
w™ (1) p(i) fori <r, 2p(r+1)fori=r+41
W) {p(0),p(1), ..., p(r), 2p(r + 1)}
X Input alphabet (usuallyt,, = {0,1,...})
ala) 1/(1 + log,a) (parameter for Rényi entropy)
0 Geometric distparameterfy(i) = (1 — 6)6°)
A Poisson digtparameter, (i) = Aie~*/i!)
d Golden ratio,2 (1 + v/5)

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

El
[10]

(11]

[12]
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