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Abstract— Let P = {p(i)} be a measure of strictly positive
probabilities on the set of nonnegative integers. Althoughthe
countable number of inputs prevents usage of the Huffman
algorithm, there are nontrivial P for which known methods
find a source code that is optimal in the sense of minimizing
expected codeword length. For some applications, however,a
source code should instead minimize one of a family of nonlinear
objective functions, β-exponential means, those of the form
loga

P

i p(i)an(i), where n(i) is the length of the ith codeword
and a is a positive constant. Applications of such minimizations
include a novel problem of maximizing the chance of message
receipt in single-shot communications (a < 1) and a previously
known problem of minimizing the chance of buffer overflow
in a queueing system (a > 1). This paper introduces methods
for finding codes optimal for such exponential means. One
method applies to geometric distributions, while another applies
to distributions with lighter tails. The latter algorithm i s applied
to Poisson distributions and both are extended to alphabetic
codes, as well as to minimizing maximum pointwise redundancy.
The aforementioned application of minimizing the chance of
buffer overflow is also considered.

Index Terms— Communication networks, generalized en-
tropies, generalized means, Golomb codes, Huffman algorithm,
optimal prefix codes, queueing, worst case minimax redundancy.

I. I NTRODUCTION, MOTIVATION , AND MAIN RESULTS

If probabilities are known, optimal lossless source coding
of individual symbols (and blocks of symbols) is usually
done using David Huffman’s famous algorithm [1]. There
are, however, cases that this algorithm does not solve. Prob-
lems with an infinite number of possible inputs — e.g.,
geometrically-distributed variables — are not covered. Also,
in some instances, the optimality criterion — orpenalty—
is not the linear penalty of expected length. Both variants of
the problem have been considered in the literature, but not
simultaneously. This paper discusses cases which are both
infinite and nonlinear.

An infinite-alphabet source emits symbols drawn from the
alphabetX∞ = {0, 1, 2, . . .}. (More generally, we useX to
denote an input alphabet whether infinite or finite.) LetP =
{p(i)} be the sequence of probabilities for each symbol, so that
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the probability of symboli is p(i) > 0. The source symbols are
coded into binary codewords. The codewordc(i) ∈ {0, 1}∗ in
codeC, corresponding to input symboli, has lengthn(i), thus
defining length distributionN . Such codes are calledinteger
codes(as in, e.g., [2]).

Perhaps the most well-known integer codes are the codes
derived by Golomb for geometric distributions [3], [4], and
many other types of integer codes have been considered by
others [5]. There are many reasons for using such integer codes
rather than codes for finite alphabets, such as Huffman codes.
The most obvious use is for cases with no upper bound — or
at least no known upper bound — on the number of possible
items. In addition, for many cases it is far easier to come up
with a general code for integers rather than a Huffman code for
a large but finite number of inputs. Similarly, it is often faster
to encode and decode using such well-structured codes. For
these reasons, integer codes and variants of them are widely
used in image and video compression standards [6], [7], as
well as for compressing text, audio, and numerical data.

To date, the literature on integer codes has considered
only finding efficient uniquely decipherable codes with respect
to minimizing expected codeword length

∑

i p(i)n(i). Other
utility functions, however, have been considered for finite-
alphabet codes. Campbell [8] introduced a problem in which
the penalty to minimize, given some continuous (strictly)
monotonic increasingcost functionϕ(x) : R+ → R+, is

L(P, N, ϕ) = ϕ−1

(

∑

i

p(i)ϕ(n(i))

)

and specifically considered the exponential subcases with
exponenta > 1:

La(P, N) , loga

∑

i

p(i)an(i) (1)

that is,ϕ(x) = ax. Note that minimizing penaltyL is also an
interesting problem for0 < a < 1 and approaches the standard
penalty

∑

i p(i)n(i) for a → 1 [8]. While ϕ(x) decreases
for a < 1, one can map decreasingϕ to a corresponding
increasing functionϕ̃(l) = ϕmax − ϕ(l) (e.g., for ϕmax =
1) without changing the penalty value. Thus this problem,
equivalent to maximizing

∑

i p(i)an(i), is a subset of those
considered by Campbell. All penalties of the form (1) are
calledβ-exponential means, whereβ = log2a [9, p. 158].

Campbell noted certain properties forβ-exponential means,
but did not consider applications for these means. Applications
were later found for the problem witha > 1 [10]–[12]; these
applications all relate to a buffer overflow problem discussed
in Section V.

http://arxiv.org/abs/cs/0511003v3
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Here we introduce a novel application for problems of the
form a < 1. Consider a situation related by Alfred Rényi,
an ancient scenario in which a rebel fortress was besieged by
Romans. The rebels’ only hope was the knowledge gathered
by a mute, illiterate spy, one who could only nod and shake
his head [13, pp. 13-14]. This apocryphal tale — based upon a
historical siege — is the premise behind the Hungarian version
of the spoken parlor game Twenty Questions. A modern
parallel in the 21st century occurred when Russian forces
gained the knowledge needed to defeat hostage-takers by
asking hostages “yes” or “no” questions over mobile phones
[14], [15].

Rényi presented this problem in narrative form in order
to motivate the relation between Shannon entropy and binary
prefix coding. Note however that Twenty Questions, traditional
prefix coding, and the siege scenario actually have three
different objectives. In Twenty Questions, the goal is to be
able to determine the symbol (i.e., the item or message)
by asking at most twenty questions. In prefix coding, the
goal is to minimize the expected number of questions —
or, equivalently, bits — necessary to determine the message.
For the siege scenario, the goal is survival; that is, assuming
partial information is not useful, the besieged would wish
to maximize the probability that the message is successfully
transmitted within a certain window of opportunity. When
this window closes — e.g., when the fortress falls — the
information becomes worthless. An analogous situation occurs
when a wireless device is losing power or is temporarily within
range of a base station; one can safely assume that the channel,
when available, will transmit at the lowest (constant) bitrate,
and will be lost after a nondeterministic time period.

Assume that the duration of the window of opportunity is
independent of the communicated message and is memoryless,
the latter being a common assumption — due to both its
accuracy and expedience — of such stochastic phenomena.
Memorylessness implies that the window duration is dis-
tributed exponentially. Therefore, quantizing time in terms of
the number of bitsT that we can send within our window,

P(T = t) = (1− a)at, t = 0, 1, 2, . . .

with known positive parametera < 1. We then wish to
maximize the probability of success, i.e., the probabilitythat
the message length does not exceed the quantized window
length:

P[n(X) ≤ T ] =
∞
∑

t=0

P(T = t) · P[n(X) ≤ t]

=

∞
∑

t=0

(1− a)at ·
∑

i∈X

p(i)1n(i)≤t

=
∑

i∈X

p(i) · (1− a)

∞
∑

t=n(i)

at

=
∑

i∈X

p(i)an(i) · (1 − a)
∞
∑

t=0

at

=
∑

i∈X

p(i)an(i)

where1n(i)≤t is 1 if n(i) ≤ t, 0 otherwise. Minimizing (1) is
an equivalent objective.

Note that this problem can be constrained or otherwise
modified for the application in question. For example, in some
cases, we might need some extra time to send the first bit, or,
alternatively, the window of opportunity might be of at least
a certain duration, increasing or reducing the probabilitythat
no bits can be sent, respectively. Thus we might have

P(T = t) =

{

t0, t = 0
(1− t0)(1 − a)at−1, t = 1, 2, . . .

for somet0 ∈ (0, 1). In this case,

P[n(X) ≤ T ] =
(1− t0)

a

∑

i∈X

p(i)an(i)

and the maximizing code is identical to that of the more
straightforward case. Likewise, if we need to send multiple
messages, the same code maximizes the expected number of
independent messages we can send within the window, due to
the memoryless property.

We must be careful regarding the meaning of an “optimal
code” when there are an infinite number of possible codes
under consideration. One might ask whether there must exist
an optimal code or if there can be an infinite sequence of codes
of decreasing penalty without any code achieving the limit
penalty value. Fortunately the answer is the former, the proof
being a special case of Theorem 2 in [16] (a generalization of
the result for the expected-length penalty [17]). The question
is then how to find one of these optimal source codes given
parametera and probability measureP .

As in the linear case, a general solution for (1) is not
known for generalP over a countably infinite number of
events, but methods and properties for finite numbers of events
— discussed in the next section — can be used to find
optimal codes for certain common infinite-item distributions.
In Section III, we consider geometric distributions and findthat
Golomb codes are optimal, although the optimal Golomb code
for a given probability mass function varies according toa.
The main result of Section III is that, forpθ(i) = (1−θ)θi and
a ∈ R+, Gk, the Golomb code with parameterk, is optimal,
where

k = max (1, ⌈− logθ a− logθ(1 + θ)⌉) .

In Section IV, we consider distributions that are relatively
light-tailed, that is, that decline faster than certain geometric
distributions. If there is a nonnegative integerr such that for
all j > r and i < j,

p(i) ≥ max



p(j),
∞
∑

k=j+1

p(k)ak−j





then an optimal binary prefix code tree exists which consists
of a unary code tree appended to a leaf of a finite code tree.
A specific case of this is the Poisson distribution,pλ(i) =
λie−λ/i!, wheree is the base of the natural logarithm (e ≈
2.71828). We show that in this case the aforementionedr is
given byr = max(⌈2aλ⌉ − 2, ⌈eλ⌉− 1). An application, that
of minimizing probability of buffer overflow, as in [11], is
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considered in Section V, where we show that the algorithm
developed in [11] readily extends to coding geometric and
light-tailed distributions. Section VI discusses the maximum
pointwise redundancy penalty, which has a similar solution
for light-tailed distributions and for which the Golomb code
Gk with k = ⌈−1/log2θ⌉ is optimal for with geometric
distributions. We conclude with some remarks on possible
extensions to this work.

Throughout the following, a set or sequence of itemsx(i)
is represented by its uppercase counterpart,X . A glossary of
terms is given in Appendix II.

II. BACKGROUND: FINITE ALPHABETS

If a finite number of events compriseP (i.e., |X | <∞), the
exponential penalty (1) is minimized using an algorithm found
independently by Huet al. [18, p. 254], Parker [19, p. 485],
and Humblet [20, p. 25], [11, p. 231], although only the last
of these considereda < 1. (The simultaneity of these lines of
research was likely due to the appearance of the first paper
on adapting the Huffman algorithm to a nonlinear penalty,
maxi(p(i) + n(i)) for given p(i) ∈ R+, in 1976 [21].) We
will use this finite-alphabet exponential-penalty algorithm in
the sections that follow in order to prove optimally for infinite
distributions, so let us reproduce the algorithm here:

Procedure for Exponential Huffman Coding (finite al-
phabets):This procedure finds the optimal code whethera >
1 (a minimization of the average of a growing exponential)
or a < 1 (a maximization of the average of a decaying expo-
nential). Note that it minimizes (1), even if the “probabilities”
do not add to1. We refer to such arbitrary positive inputs as
weights, denoted byw(i) instead ofp(i):

1) Each itemi has weightw(i) ∈ WX , whereX is the
(finite) alphabet andWX = {w(i)} is the set of all such
weights. Assume each itemi has codewordc(i), to be
determined later.

2) Combine the items with the two smallest weightsw(j)
and w(k) into one compound item with the combined
weightw̃(j) = a·(w(j)+w(k)). This item has codeword
c̃(j), to be determined later, while itemj is assigned
codewordc(j) = c̃(j)0 and k codewordc(k) = c̃(j)1.
Since these have been assigned in terms ofc̃(j), replace
w(j) andw(k) with w̃(j) in WX to form WX̃ .

3) Repeat procedure, now with the remaining codewords
(reduced in number by1) and corresponding weights,
until only one item is left. The weight of this item
is
∑

i w(i)an(i). All codewords are now defined by
assigning the null string to this trivial item.

This algorithm assigns a weight to each node of the resulting
implied code tree by having each item represented by a
node with its parent representing the items combined into its
subtree, as in Fig. 1: If a node is a leaf, its weight is given
by the associated probability; otherwise its weight is defined
recursively asa times the sum of its children. This concept is
useful in visualizing both the coding procedure and its output.

Van Leeuwen implemented the Huffman algorithm in linear
time (to input size) given sorted weights in [22], and this
implementation was extended to the exponential problem in
[23] as follows:

Two-Queue Implementation of Exponential Huffman
Coding: The two-queue method of implementing the Huffman
algorithm puts nodes/items in two queues, the first of which is
initialized with the input items (eventual leaf nodes) arranged
from head to tail in order of nondecreasing weight, and the
second of which is initially empty. At any given step, a node
with lowest weight among all nodes in both queues is at the
head of one of the two queues, and thus two lowest-weighted
nodes can be combined in constant time. This compound node
is then inserted into (the tail of) the second queue, and the
algorithm progresses until only one node is left. This node is
the root of the coding tree and is obtained in linear time.

The presentation of the algorithm in [23] did not include a
formal proof, so we find it useful to present one here:

Lemma 1:The two-queue method using the exponential
combining rule results in an optimal exponential Huffman code
given a finite number of input items.

Proof: The method is clearly a valid implementation of
the exponential Huffman algorithm so long as both queues’
sets of nodes remain in nondecreasing order. This is clearly
satisfied prior to the first combination step. Here we show that,
if nodes are in order at all points prior to a given combination
step, they must be in order at the end of that step as well, in-
ductively proving the correctness of the algorithm. It is obvious
that order is preserved in the single-item queue, since nodes are
only removed from it, not added to it. In the compound-node
queue, order is only a concern if there is already at least one
node in it at the beginning of this step, a step that combines
nodes we call nodei−1 and nodei−2. If so, the item at the tail
of the compound-node queue at the beginning of the step was
two separate items,i−3 andi−4, at the beginning of the prior
step. At the beginning of this prior step, all four items must
have been distinct — i.e., corresponding to distinct sets of
(possibly combined) leaf nodes — and, because the algorithm
chooses the smallest two nodes to combine, neitheri−3 nor
i−4 can have a greater weight than eitheri−1 or i−2. Thus
— sincea · (w(i−3) + w(i−4)) ≤ a · (w(i−1) + w(i−2)) and
the node with weighta · (w(i−3) + w(i−4)) is the compound
node with the largest weight in the compound-node queue at
the beginning of the step in question — the queues remain
properly ordered at the end of the step in question.

If a < 0.5, the compound-node queue will never have more
than one item. At each step after the first, the sole compound
item will be removed from its queue since it has a weight less
than the maximum weight of each of the two nodes combined
to create it, which in turn is no greater than the weight of any
node in the single-item queue. It is replaced by the new (sole)
compound item. This extends toa = 0.5 if we prefer to merge
combined nodes over single items of the same weight. Thus,
any finite input distribution can be optimally coded fora ≤ 0.5
using atruncated unary code, a truncated version of theunary
code, the latter of which has codewords of the form{1j0 : j ≥
0}. The truncated unary code has identical codewords as the
unary code except for the longest codeword, which is of the
form {1|X |−1}. This results from each compound node being
formed using at least one single item (leaf). Taking limits,
informally speaking, results in a unary limit code. Formally,
this is a straightforward corollary of Theorem 2 in Section IV.
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If a > 0.5, a code with finite penalty exists if and only
if Rényi entropy of orderα(a) = (1 + log2a)

−1 is finite, as
shown in [16]. It was Campbell who first noted the connection
between the optimal code’s penalty,La(P, N∗), and Rényi
entropy

Hα(P ) ,
1

1− α
log2

∑

i∈X

p(i)α

⇒ Hα(a)(P ) =
1 + log2a

log2a
log2

∑

i∈X

p(i)(1+log2a)−1

.

This relationship is

Hα(a)(P ) ≤ La(P, N∗) < Hα(a)(P ) + 1

which should not be surprising given the similar relationship
between Huffman-optimal codes and Shannon entropy [24],
which corresponds toa → 1 (α → 1) [8], [25]; due to this
correspondence, Shannon entropy is sometimes expressed as
H1(P ).

III. G EOMETRIC DISTRIBUTION WITH EXPONENTIAL

PENALTY

Consider the geometric distribution

pθ(i) = (1− θ)θi

for parameterθ ∈ (0, 1). This distribution arises in run-length
coding among other circumstances [3], [4].

For the traditional linear penalty, a Golomb code with
parameterk — or Gk — is optimal for θk + θk+1 ≤ 1 <
θk−1 + θk. Such a code consists of a unary prefix followed
by a binary suffix, the latter taking one ofk possible values.
If k is a power of two, all binary suffix possibilities have the
same length; otherwise, their lengthsσ(i) differ by at most1
and

∑

i 2−σ(i) = 1. Binary codes such as these suffix codes
are calledcompletecodes. This defines the Golomb code; for
example, the Golomb code fork = 3 is:

i p(i) c(i)
0 1− θ 0 0
1 (1− θ)θ 0 10
2 (1− θ)θ2 0 11
3 (1− θ)θ3 10 0
4 (1− θ)θ4 10 10
5 (1− θ)θ5 10 11
6 (1− θ)θ6 110 0
7 (1− θ)θ7 110 10
8 (1− θ)θ8 110 11
9 (1− θ)θ9 1110 0
...

...
...

where the space in the code separates the unary prefix from
the complete suffix. In general, codewordj for Gk is of the
form {1⌊j/k⌋0b(j mod k, k) : j ≥ 0}, whereb(j mod k, k) is
a complete binary code for the(j− k⌊j/k⌋+1)th of k items.

It turns out that such codes are optimal for the exponential
penalty:

Theorem 1:For a ∈ R+, if

θk + θk+1 ≤ 1

a
< θk−1 + θk (2)

for k ≥ 1, then the Golomb code Gk is the optimal code for
Pθ. If no suchk exists, the unary code G1 is optimal.

Remark:This rule for finding an optimal Golomb Gk code
is equivalent to

k = max (1, ⌈− logθ a− logθ(1 + θ)⌉) .

This is a generalization of the traditional linear result, which
corresponds toa → 1. Cases in which the left inequality is
an equality have multiple solutions, as with linear coding;see,
e.g., [26, p. 289]. The proof of the optimality of the Golomb
code for exponential penalties is somewhat similar to that
of [4], although it must be significantly modified due to the
nonlinearity involved.

Before proving Theorem 1, we need the following lemma:
Lemma 2:Consider a Huffman combining procedure, such

as the exponential Huffman coding procedure, implemented
using the two-queue method presented in the previous section
just prior to Lemma 1. Now consider a step at which the
first (single-item) queue is empty, so that remaining are only
compound items, that is, items representing internal nodes
rather than leaves in the final Huffman coding tree. Then, in
this final tree, the nodes corresponding to these compound
items will be on levels differing by at most one; that is, the
nodes will form a complete tree. Furthermore, ifn is the
number of items remaining at this point, all items that finish
at level ⌈log2n⌉ appear closer to the head of the (second,
nonempty) queue than any item at level⌈log2n⌉− 1 (if any).

Proof: [Lemma 2] We use an inductive proof, in which
the base cases of one and two compound items (i.e., internal
nodes) are trivial. Suppose the lemma is true for every case
with n− 1 items forn > 2, that is, that all nodes are at levels
⌊log2(n− 1)⌋ or ⌈log2(n− 1)⌉, with the latter items closer to
the head of the queue than the former. Consider now a case
with n nodes. The first step of coding is to merge two nodes,
resulting in a combined item that is placed at the end of the
combined-item queue. Because it is at the end of the queue
in the reduced problem of sizen − 1, this combined node is
at level ⌊log2(n − 1)⌋ in the final tree, and its children are
at level 1 + ⌊log2(n − 1)⌋ = ⌈log2n⌉. If n is a power of
two, the remaining items end up on levellog2n = ⌈log2(n−
1)⌉, satisfying this lemma. Ifn − 1 is a power of two, they
end up on levellog2(n − 1) = ⌊log2n⌋, also satisfying the
lemma. Otherwise, there is at least one item ending up at level
⌈log2n⌉ = ⌈log2(n−1)⌉ near the head of the queue, followed
by the remaining items, which end up at level⌊log2n⌋ =
⌊log2(n−1)⌋. In any case, the lemma is satisfied forn items,
and thus, inductively, for any number of items.

This lemma applies to any problem in which a two-queue
Huffman algorithm provides an optimal solution, including
the original Huffman problem and the tree-height problem of
[19]. Here we apply the lemma to the exponential Huffman
algorithm to prove Theorem 1:

Proof: [Theorem 1] We start with an optimal exponential
Huffman code for a sequence of similar finite weight distri-
butions. These finite weight distributions, calledm-reduced
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Fig. 1. Formation of a Golomb code using a code for anm-reduced source. In this illustration,m = 17 and k = 5, and smaller weights are pictorially
lower. Weights are merged bottom-up, in a manner consistentwith the exponential Huffman algorithm, first in separate (truncated) unary subtrees, then in a
(five-leaf) complete tree.

geometric sourcesWm, are defined as:

wm(i) ,







(1 − θ)θi, 0 ≤ i ≤ m
(1− θ)aθi

1− aθk
, m < i ≤ m + k.

wherek is as given in the statement of the theorem, or1 if
no suchk exists.

Weights wm(0) through wm(m) are decreasing, as are
wm(m + 1) throughwm(m + k). Thus we can combine the
nodes with weightswm(m) andwm(m + k) if

(1 − θ)aθm+k

1− aθk
≤ (1− θ)θm−1

and
(1− θ)aθm+k−1

1− aθk
> (1 − θ)θm or k = 1.

These conditions are equivalent to the left and right sides,
respectively, of (2). Thus the combined item is

wm−1(m) =
(1 − θ)aθm

1− aθk

and the code is reduced to theWm−1 case.
After merging the two smallest weights form = 0, the

reduced source is

w−1(i) =
(1− θ)aθi

1− aθk
, 0 ≤ i ≤ k − 1.

For k = 1 (including all instances of the degeneratea ≤
0.5 case and all instances in which (2) cannot be satisfied),
this proves that the optimal tree is the truncated unary tree.
Considering now onlyk > 1 for m ≥ k − 1, the two-queue
algorithm assures that, when the problem is reduced to weights
{w−1(i)}, all corresponding nodes are in the combined-item
queue. Lemma 2 thus proves that these nodes form a complete
code. The overall optimal tree for anym-reduced code with
m ≥ k − 1 is then a truncated Golomb tree, as pictorially
represented in Fig. 1, wherem = 17 and k = 5. Note that
m + 1 is the number of leaves in common with what we call
the “Golomb tree,” the tree we show to be optimal for the
original geometric source. The number of remaining leaves in
the truncated tree isk, which is thus the number of distinct
unary subtrees in the Golomb tree.

Fig. 1 represents both the truncated and full Golomb trees,
along with how to merge the weights. Squares represent items
to code, while circles represent other nodes of the tree. Smaller
weights are below larger ones, so that items are merged as
pictured. Rounded squares are itemsm + 1 throughm + k,
the items which are replaced in the Golomb tree by unary
subtrees, that is, subtrees representing the unary code. Other
squares are items0 throughm, those corresponding to single
items in the integer code. White circles are the leaves used for
the complete tree.
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(a) a > 1
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∗ θ
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θ
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θ

(b) a < 1

Fig. 2. Redundancy of the optimal code for the geometric distribution with the exponential penalty (parametera). R̄a(N∗

θ,a
, Pθ) = La(Pθ, N∗

θ,a
) −

Hα(a)(Pθ), whereα(a) = (1 + log2a)−1, Pθ is the geometric probability sequence implied byθ, andN∗

θ,a
is the optimal length sequence for distribution

Pθ and parametera.

It is equivalent to follow the complete portion of the code
with the unary portion — as in the exponential Huffman tree
in Fig. 1 — or to reorder the bits and follow the unary portion
with the complete portion — as in the Golomb code [3]. The
latter is more often used in practice and has the advantage
of being alphabetic, that is,i > j if and only if c(i) is
lexicographically afterc(j).

The truncated Golomb tree for anym ≥ k− 1 represents a
code that has the same penalty for them-reduced distribution
as does the Golomb code with the corresponding geometric
distribution. We now show that this is the minimum penalty
for any code with this geometric distribution.

Let N∗
θ,a (or N∗ if there is no ambiguity) be codeword

lengths that minimize the penalty for the geometric distribution
(which, as we noted, exist as shown in Theorem 2 of [16]).
Let Nm be codeword lengths for them-reduced distribution
found earlier; that is,nm(i) is the Golomb length fori ≤ m
andnm(i) = nm(i− k) for the remaining values. Finally, let
N∞ be the lengths of the code implied bym → ∞, that is,
the lengths of the Golomb code Gk. Then

loga

∞
∑

i=0

p(i)an∗(i) ≤ loga

∞
∑

i=0

p(i)an∞(i)

= loga

m+k
∑

i=0

wm(i)anm(i)

≤ loga

m+k
∑

i=0

wm(i)an∗(i)

(3)

where the inequalities are due to the optimality of the respec-
tive codes and the facts thatwm(i) = p(i) for i ≤ m and

wm(i) =

∞
∑

j=0

(1 − θ)θi+jkaj+1 =

∞
∑

j=0

aj+1p(i + jk)

for i ∈ (m, m + k]. The difference between the exponent of

the first and the last of the expressions in (3) is

∞
∑

i=0

p(i)an∗(i) −
m+k
∑

i=0

wm(i)an∗(i)

=

∞
∑

i=m+1

p(i)an∗(i) −
m+k
∑

i=m+1

wm(i)an∗(i).

As m → ∞ for m ≥ k − 1, the sums on the right-
hand side approach0; the first is the difference between a
limit (an infinite sum) and its approaching sequence of finite
sums, all upper bounded in (3), and each of the terms in
the second summation is upper-bounded by a multiplicative
constant of the corresponding term in the first. (In the latter
finite summation, terms are0 for i > m+k.) Their difference
therefore also approaches zero, so the summations on the
left-hand side approach equality, as do those in (3), and the
Golomb code must be optimal.

It is equivalent for the bits of the unary portion to be
complemented, that is, to use{0⌊j/k⌋1b(j mod k, k) : j ≥ 0}
(as in [4]) instead of{1⌊j/k⌋0b(j mod k, k) : j ≥ 0} (as in
[3]). It is also worth noting that Golomb originally proposed
his code in the context of a spy reporting run lengths; this
is similar to Rényi’s context for communications, relatedin
Section I as a motivation for the nonlinear penalty witha < 1.

A little algebra reveals that, for a distributionPθ and a
Golomb code with parameterk (lengthsNk),

La(Pθ , Nk) = loga

∞
∑

i=0

(1− θ)θia(⌈ i+1−z
k ⌉+g)

= g + loga

(

1 + (a−1)θz

1−aθk

)

(4)

where g = ⌊log2 k⌋ + 1 and z = 2g − k. Therefore,
Theorem 1 provides thek that minimizes (4). Ifa > 0.5,
the corresponding Rényi entropy is

Hα(a)(Pθ) = loga

1− θ

(1 − θα(a))1/α(a)
(5)
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Fig. 3. Redundancy of the optimal code for the geometric distribution with
the traditional linear penalty.

where we recall thatα(a) = (1+log2a)−1. (Again,a ≤ 0.5 is
degenerate, an optimal code being unary with no correspond-
ing Rényi entropy.)

In evaluating the effectiveness of the optimal code, one
might use the following definition ofaverage pointwise re-
dundancy(or just redundancy):

R̄a(N, P ) , La(P, N)−Hα(a)(P ).

For nondegenerate values, we can plot theR̄a(N∗
θ,a, Pθ)

obtained from the minimization. This is done fora > 1 and
a < 1 in Fig. 2. Note that asa → 1, the plot approaches the
redundancy plot for the linear case, e.g., [4], reproduced as
Fig. 3.

In many potential applications of nonlinear penalties —
such as the aforementioned fora > 1 [10]–[12] anda < 1
(Section I) —a is very close to1. Since the preceding analysis
shows that the Golomb code that is optimal for givena andθ
is optimal not only for these particular values, but for a range
of a (fixing θ) and a range ofθ (fixing a), the Golomb code
for the traditional linear penalty is, in some sense, much more
robust and general than previously appreciated.

IV. OTHER INFINITE SOURCES

Abrahams noted that, in the linear case, slight deviation
from the geometric distribution in some cases does not change
the optimal code [27, Proposition (2)]. Other extensions to
and deviations of the geometric distribution have also been
considered [28]–[30], including optimal codes for nonbinary
alphabets [27], [29]. Many of these approaches can be adapted
to the nonlinear penalties considered here. However, in this
section we instead consider another type of probability distri-
bution for binary coding, the type with a light tail.

Humblet’s approach [31], later extended in [32], uses the
fact that there is an optimal code tree with a unary subtree
for any probability distribution with a relatively light tail, one
for which there is anr such that, for allj > r and i < j,
p(i) ≥ p(j) and p(i) ≥

∑∞
k=j+1 p(k). Due to the additive

nature of Huffman coding, items beyondr form the unary

subtree, while the remaining tree can be coded via the Huffman
algorithm. Once again, this has to be modified for exponential
penalties.

We wish to show that the optimal code can be obtained
when there is a nonnegative integerr such that, for allj > r
and i < j,

p(i) ≥ max



p(j),

∞
∑

k=j+1

p(k)ak−j



 .

The optimal code is obtained by considering the reduced
alphabet consisting of symbols0, 1, . . . , r + 1 with weights

w(i) =

{

p(i), i ≤ r
∑∞

k=r+1 p(k)ak−r , i = r + 1.
(6)

Apply exponential Huffman coding to this reduced set of
weights. For items0 throughr, the Huffman codewords for
the reduced and the infinite alphabets are identical. Each other
item i > r has a codeword consisting of the reduced codeword
for item r+1 (which, without loss of generality, consists of all
1’s) followed by the unary code fori− r−1, that is,i− r−1
ones followed by a zero. We call such codesunary-ended. A
pictorial example is shown in Fig. 4 for a problem instance
for which r = 12.

Theorem 2:Let p(·) be a probability measure on the set of
nonnegative integers, and leta be the parameter of the penalty
to be optimized. If there is a nonnegative integerr such that
for all j > r and i < j,

p(i) ≥ p(j) (7)

and

p(i) ≥
∞
∑

k=j+1

p(k)ak−j (8)

then there exists a minimum-penalty binary prefix code with
every codewordj > r consisting ofj−x 1’s followed by one
0 for some fixed nonnegative integerx.

Proof: The idea here is similar to that for geometric
distributions, to show a sequence of finite codes which in some
sense converges to the optimal code for the infinite alphabet. In
this case we consider the infinite sequence of codes implicitin
the above; for a givenm ≥ −1, the corresponding codeword
weights are

wm(i) =

{

p(i), i < r + m + 2
∑∞

k=r+m+2 p(k)ak−r−m−1, i = r + m + 2.

It is obvious that an optimal code for eachm-reduced distribu-
tion is identical to the proposed code for the infinite alphabet,
except for the itemr + m + 2, which is the code tree sibling
of item r + m + 1.

For a < 1, we show, as in the geometric case, that
the difference between the penalties for the optimal and the
proposed codes approaches0. In this case, the equivalent of
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Fig. 4. Formation of a unary-ended infinite code using a Huffman-like code. (Smaller weights are pictorially lower.) Weights are merged bottom-up, in a
manner consistent with the exponential Huffman algorithm,first in the (truncated) unary subtree, then as in the exponential Huffman algorithm.

inequality (3) is

loga

∞
∑

i=0

p(i)an∗(i) ≤ loga

∞
∑

i=0

p(i)an∞(i)

= loga

r+m+2
∑

i=0

wm(i)anm(i)

≤ loga

r+m+2
∑

i=0

wm(i)an∗(i)

(9)

where in this casen∞(i) denotes a codeword of the proposed
code,nm(i) = n∞(i) for i < r+m+2 andnm(i) = n∞(i−1)
for i = r + m + 2, and, again,n∗(·) denotes the lengths of
codewords in an optimal code. The corresponding difference
between the exponent of the first and the last expressions of
(9) is

∞
∑

i=0

p(i)an∗(i) −
r+m+2
∑

i=0

wm(i)an∗(i)

=
∞
∑

i=r+m+2

p(i)an∗(i) − wm(r + m + 2)an∗(r+m+2).

(10)
As m→∞, both terms in the difference on the second line of
(10) clearly approach0, so the terms in (9) approach equality,
showing the proposed code to be optimal.

For a > 1, the same method will work, but it is not so
obvious that the terms in the difference on the second line of
(10) approach0. Let us first find an upper bound forwm(r +

m + 2) in terms ofp(r + m + 2):

wm(r + m + 2) = ap(r + m + 2) + a2p(r + m + 3) +
∞
∑

i=r+m+4

p(i)ai−r−m−1

≤ (a2 + a)p(r + m + 2) + a2p(r + m + 3)

≤ (2a2 + a)p(r + m + 2)

where the first equality is due to the definition ofwm(·), the
first inequality due to (8), and the second inequality due to (7).
Thuswm(r + m + 2) has an upper bound of(2a2 + a)p(r +
m + 2) for all m ≥ −1. In addition, since the proposed code
has a finite penalty — identical to that of any reduced code
— the optimal code has a finite penalty, and the sequence
of its terms — each one of which has the formp(r + m +
2)an∗(r+m+2) — approaches0 asm increases. Thuswm(r +
m+2)an∗(r+m+2) approaches0 as well. Due to the optimality
of n∗(·), wm(r+m+2)an∗(r+m+2) serves as an upper bound
for

∑∞
i=r+m+2 p(i)an∗(i), and thus both terms approach0.

As with a < 1, then, the terms in (9) approach equality for
m→∞, showing the proposed code to be optimal.

The rate at whichp(·) must decrease in order to satisfy
condition (8) clearly depends ona. One simple sufficient
condition — provable via induction — is that it satisfyp(i) ≥
ap(i + 1) + ap(i + 2) for large i. A less general condition is
that p(i) eventually decrease at least as quickly asgi where
g = (

√

1 + 4/a − 1)/2, the same ratio needed for a unary
geometric code forθ = g, as in (2). The ratiog is plotted in
Fig. 5.

For a→ 1, these conditions approach those derived in [31].
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of a unary-ended code. Note that1/g = Φ , 1

2
(1 +

√
5), the golden ratio,

at a = 1.

The stronger results of [32] do not easily extend here due
to the nonadditivity of the exponential penalty. An attemptat
such an extension in [33, pp. 103–105] gives no criteria for
success, so that, while one could produce certain codewords
for certain codes, one might fail in producing other codewords
for the same codes or for other codes. Thus this extension is
not truly a workable algorithm.

Consider the example of optimal codes for the Poisson
distribution,

pλ(i) =
λie−λ

i!
.

How does one find a suitable value forr (as in Section IV) in
such a case? It has been shown thatr ≥ ⌈eλ⌉−1 yieldsp(i) ≥
p(j) for all j > r and i < j, satisfying the first condition of
Theorem 2 [31]. Moreover, if, in addition,j ≥ ⌈2aλ⌉−1 (and
thusj > aλ− 1), then
∞
∑

k=1

p(j + k)ak =
e−λλj

j!

[

aλ

j + 1
+

a2λ2

(j + 1)(j + 2)
+ · · ·

]

< p(j)

[

aλ

j + 1
+

a2λ2

(j + 1)2
+ · · ·

]

= p(j)

aλ
j+1

1− aλ
j+1

≤ p(j)

≤ p(i).

Thus, since we considerj > r, r = max(⌈2aλ⌉−2, ⌈eλ⌉−1)
is sufficient to establish anr such that the above method yields
the optimal infinite-alphabet code.

In order to find the optimal reduced code, use

w−1(r+1) =

∞
∑

k=r+1

p(k)ak−r = a−reλ(a−1)−
r
∑

k=0

p(k)ak−r.

For example, consider the Poisson distribution withλ = 1. We
code this for botha = 1 anda = 2. For both values,r = 2,
so both are easy to code. Fora = 1, w−1(3) = 1− 2.5e−1 ≈
0.0803 . . ., while, for a = 2, w−1(3) = 0.25e − 1.25e−1 ≈

0.2197 . . .. After using the appropriate Huffman procedure on
each reduced source of4 weights, we find that the optimal
code fora = 1 has lengthsN = {1, 2, 3, 4, 5, 6, . . .} — those
of the unary code — while the optimal code fora = 2 has
lengthsN = {2, 2, 2, 3, 4, 5, . . .}.

It is worthwhile to note that these techniques are easily
extensible to finding an optimal alphabetic code — that is, one
with c(i)’s arranged in lexicographical order — fora > 1. One
needs only to find the optimal alphabetic code for the reduced
code with weights given in equation (6), as in [18], with
codewords fori > r consisting of the reduced code’s codeword
for r+1 followed byi−r−1 ones and one zero. As previously
mentioned, Golomb codes are also alphabetic and thus are
optimal alphabetic codes for the geometric distribution.

V. A PPLICATION: BUFFER OVERFLOW

The application of the exponential penalty in [11] concerns
minimizing the probability of a buffer overflowing. It requires
that each candidate code for overall optimality be an optimal
code for one of a series of exponential parameters (a’s where
a > 1). An iterative approach yields a final output code by
noting that, for the overall utility function, each candidate code
is no worse than its predecessor, and there are a finite number
of possible candidate codes. Therefore, eventually a candidate
code yields the same value as the prior candidate code, and
this can be shown to be the optimal code. This application of
exponential Huffman coding can, using the above techniques,
be extended to infinite alphabets.

In the application, integers with a known distributionP
arrive with independent intermission times having a known
probability density function. Encoded bits are sent at a given
rate, with bits to be sent waiting in a buffer of fixed size.
Constantb represents the buffer size in bits, random variable
T represents the probability distribution of source integerin-
termission times measured in units of encoded bit transmission
time, and functionA(s) is the Laplace-Stieltjes transform of
T , E[e−sT ].

When the integers are coded usingN = {n(i)}, the
probability per input integer of buffer overflow is of the order
of e−s∗b, wheres∗ is the largests such that

f(N, s) ≤ 1

where

f(N, s) , A(s)

∞
∑

i=0

p(i)esn(i). (11)

The previously known algorithm to maximizes∗ is as
follows:

Procedure for Finding Code with Largest s∗ [11]
1) Choose anys0 ∈ R+.
2) j ← 0.
3) j ← j + 1.
4) Find codeword lengthsNj minimizing

∑

i p(i)esj−1n(i).
5) Computesj , max{s ∈ R : f(Nj , s) ≤ 1}.
6) If sj 6= sj−1 then go to step 3; otherwise stop.
We can use the above methods in order to accomplish step

4, but we still need to examine how to modify steps 1 and 5
for an infinite input alphabet.
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First note that, unlike in the finite case,s∗ < ∞, that is,
there always exists ans∗ ∈ R+ such that, for alls > s∗,
f(N, s) > 1. For any stable system, the buffer cannot receive
integers more quickly than it can transit bits, so there is a
positive probability thatP[T ≥ 1]. Thus the Laplace-Stieltjes
transformA(s) exceedsc1e

−s for some constantc1 > 0.
Also, without loss of generality, we can assume thatp(i) is
monotonic nonincreasing and an optimaln(i) is monotonic
nondecreasing. This monotonicity means thatn(i) ≥ log2i,
and there is no exponential basea0 and offset constantc2

for which
∑∞

i=0 p(i)esn(i) ≤ as+c2
0 for all s ∈ R+. Thus

the summation in (11) must increase superexponentially, and,
multiplying theA(s) and summation terms, there is ans such
that f(N, s) > 1 for s > s∗.

For step 1, the initial guess proposed in [11] is an upper
bound for all possible values ofs∗. The Rényi entropy ofP
is used to find an initial guess using

A(s)

(

∞
∑

i=0

p(i)
1

1+log2es

)1+log2es

≤ A(s)

∞
∑

i=0

p(i)esn(i),

(12)
and choosings0 as the largests such that the left term of
(12) is no greater than one. Thus,s0 ≥ s∗ for any value ofs∗

corresponding to step 5.
This technique is well-suited to a geometric distribution,for

which entropy has the closed form shown in equation (5), so

A(s) · 1− θ
(

1− θ(1+log2es)−1
)1+log2es ≤ f(N, s).

However, a general distribution with a light tail, such as the
Poisson distribution, might have no closed form for this bound.
One solution to this is to use more relaxed lower bounds on
the sum — such as using a partial sum with a fixed number
of terms — yielding looser upper bounds fors∗. Another
approach would be to note that, because of the light tail, the
infinite sum can usually be quickly calculated to the precision
of the architecture used. Note, however, that no matter what
the technique, the bound must be chosen so thats0 is an
real number and not infinity. Partial sums may be refined to
accomplish this.

In calculating f(N, s) for use in step 5, the geometric
distribution has the closed-form value forf obtainable from
equation (4), while the other distributions must instead rely on
approximations off . As before, this is easily done due to the
light tail of the distribution. Alternatively, a partial sum and
a geometric approximation can be used to boundf(N, s) and
thuss∗, and these two bounds used to find two codes. If the
two codes are identical, the algorithm may proceed; otherwise,
we must roll back to the summation and improve the bounds
until the codes are identical.

These variations make the steps of the algorithm possible,
but the algorithm itself must also be proven correct with the
variations.

Theorem 3:Given a geometric distribution or an input dis-
tribution satisfying the conditions of Theorem 2 fora = es0 ,
wheres0 is an upper-bound ons∗, the above Procedure for
Finding Code with Largests∗ terminates with an optimal code.

Proof: The number of codes that can be generated in the
course of running the algorithm should be bounded so that
the algorithm is guaranteed to terminate. Optimality for the
algorithm then follows as for the finite case [11]. As in the
finite case,sj+1 ≥ sj for j ≥ 1 (but not j = 0) due to step
5 [f(Nj , sj) ≤ 1], step 4 [f(Nj+1, sj) ≤ f(Nj , sj)], and the
definition of sj+1.

In the case of a geometric distribution, eachNj is a Golomb
code Gkj for some positive integerkj . Clearly, if we choose
s0 as detailed above, it is the greatest value ofsj , being either
optimal or unachievable due to its derivation as a bound of
the problem. Since Gki (with lengthsNi) is the optimal code
for the code with exponential basea = esi−1 , (2) means that
θki + θki+1 ≤ e−si−1 < θki−1 + θki , and thus

(1 + θ)θk1 ≤ e−s0 ≤ e−sj−1 < (1 + θ)θkj−1

and, sinceθ < 1, we havekj − 1 < k1 (or, equivalently,
kj ≤ k1) for all j ≥ 1. Therefore, there are onlyk1 possible
codes the algorithm can generate.

In the case of a distribution with a lighter tail, the minimum
r of Theorem 2 increases with each iteration after the first, and
the firstr1 (corresponding tos0) upper bounds the remaining
ri. Thus all candidate codes can be specified by their first
r1 codeword lengths, none of which is greater thanr1. The
number of codes is then bounded for both cases, and the
algorithm terminates with the optimal code.

VI. REDUNDANCY PENALTIES

It is natural to ask whether the above results can be extended
to other penalties. One penalty discussed in the literatureis that
of maximal pointwise redundancy [34], which is

R∗(N, P ) , sup
i∈X

[n(i) + log2p(i)]

where we usesup when we are not assured the existence of a
maximum. This can be shown to be a limit of the exponential
case, as in [23], allowing us to analyze its minimization using
the same techniques as exponential Huffman coding. This
limit can be shown by definingdth exponential redundancy
as follows:

Rd(N, P ) ,
1

d
log2

∑

i∈X

p(i)2d(n(i)+log2p(i))

=
1

d
log2

∑

i∈X

p(i)1+d2dn(i).

ThusR∗(N, P ) = limd→∞ Rd(N, P ), and the above methods
should apply in the limit. In particular:

Theorem 4:The Golomb code Gk for k = ⌈−1/log2θ⌉ is
optimal for minimizing maximal pointwise redundancy forPθ.

Proof:
Case 1:Consider first when−1/log2θ is not an integer. We

show thatk = ⌈−1/log2θ⌉ is optimal by finding aD such
that, for all d > D, the optimal code for thedth exponential
redundancy penalty is Gk. For a fixedd, (2) implies that such
a code should satisfy

(θ1+d)k + (θ1+d)k+1 ≤ 1

2d
< (θ1+d)k−1 + (θ1+d)k, (13)
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Fig. 6. Maximal pointwise redundancy of the optimal maximalredundancy code for the geometric distribution, solid (with discontinuities represented by
dashed); optimaldth exponential redundancy for the geometric distribution,dotted ford = {1, 2, 4, 16, 256, 65536}, from lowest to highest.

and thus we wish to show that this holds for alld > D.
Consider k = ⌈−1/log2θ⌉. Clearly, k > −1/log2θ, or,
equivalently,

θk <
1

2
. (14)

Now consider

D = −1 +
1

1 + (k − 1)log2θ

so that(k − 1)log2θ ∈ (−1, 0] and thereforeD ≥ 0. Taken
together with the fact thatθ ∈ (0, 1), (14) yieldsθdk < 2−d

and (1 + θ1+d)θk < 2θk < 1. Multiplication yields the left-
hand side of (13) for anyd > D. For any suchd, algebra
easily shows that we also have the inequality(2θk−1)1+d ≥ 2,
yielding
[

(θ1+d)k−1 + (θ1+d)k
]

2d =
1

2
(2θk−1)1+d +

1

2
(2θk)1+d

=
1

2
(2θk)1+d(θ−1−d + 1)

=
1

2
(2θk−1)1+d(1 + θ1+d)

> 1.

This is equivalent to the right-hand side of inequality (13)for
the values implied by the definition ofRd(N, P ). Then Gk
is an optimal code ford > D, and thus for the limit case of
maximal pointwise redundancy.

Case 2: Now consider when−1/log2θ is an integer. It
should be noted that, for the traditional (linear) penalty,these
are precisely thek values that Golomb considered in his
original paper [3] and that they are local infima for the
minimum maximal pointwise redundancy function inθ, as in
Fig. 6. Here we show they are local minima.

Sinceθ = 0.5 is a dyadic probability distribution and thus
trivial, we can assume thatθ > 0.5. We wish to show that
optimality is preserved in these right limits of Case 1. Note
that, for eachi with fixed N ,

lim
θ′↑θ

[n(i) + log2pθ′(i)] = n(i) + log2pθ(i).

This is of particular interest for the value ofi maximizing
pointwise redundancy for Gk at θ′, whereθ′ ∈ (θ1/log22θ, θ),
allowing us to use the right limit ofθ. Let i∗∗ , 2⌈log2k⌉− k,
the smallesti which has codeword length exceeding the
codeword length for item0. Clearly the pointwise redundancy
for this value is greater than that for all items withi < i∗∗,
since they are one bit shorter but not more than twice as
likely. Similarly, items in (i∗∗, k) have identical length but
lower probability, and thus smaller redundancy. For items with
i ≥ k, note that the redundancy of items in the sequence{j, j+
k, j + 2k, . . .} for any j must be nonincreasing because the
difference in redundancy is constant yet redundancy is upper-
bounded by the maximum. Thusi∗∗ maximizes pointwise
redundancy for Gk at θ′.

We know the pointwise redundancy ofi∗∗ for Gk at θ,
although we have yet to show thati∗∗ yields the maximal
pointwise redundancy for Gk at θ or that Gk minimizes max-
imal pointwise redundancy. However, for any code, including
the optimal code, as a result of pointwise continuity,

sup
i∈X∞

[n(i) + log2pθ(i)] ≥ n(i∗∗) + log2pθ(i
∗∗)

= lim
θ′↑θ

[n(i∗∗) + log2pθ′(i∗∗)].

From the above discussion, it is clear that the right-hand
side is minimized by the Golomb code withk = −1/log2θ,
so, because the left-hand side achieves same value with this
code, the left-hand side is indeed minimized by Gk. Thus
this code minimizes maximal pointwise redundancy forθ. The
corresponding maximal pointwise redundancy is

maxi[n
∗∗
θ (i) + log2pθ(i)]

= n∗∗
θ (2⌈log2k⌉ − k) + log2pθ(2

⌈log2k⌉ − k)

= ⌈log2k⌉+ 1 + log2(1− θ) + (2⌈log2k⌉ − k)log2θ

whereN∗∗
θ = {n∗∗

θ (i)} is defined as the lengths of a code
minimizing maximal pointwise redundancy. Note that this is
the redundancy for all itemsi = 2⌈log2k⌉ + jk with integer
j ≥ −1.
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It is worthwhile to observe the behavior of maximal point-
wise redundancy in a fixed (not necessarily optimal) Golomb
code with length distributionNk. The maximal pointwise
redundancy

R∗(Nk, Pθ) = sup
i∈X∞

[nk(i) + log2pθ(i)]

decreases with increasingθ — and is an optimal code forθ ∈
(2−1/(k−1), 2−1/k] — until θ exceeds2−1/k, after which there
is no maximum, that is, pointwise redundancy is unbounded.
This explains the discontinuous behavior of minimum maximal
redundancy for an optimal code as a function ofθ, illustrated
in Fig. 6, where each continuous segment corresponds to an
optimal code forθ ∈ (2−1/(k−1), 2−1/k].

Note also the oscillating behavior asθ ↑ 1. We show in
Appendix I thatlim infθ↑1 R∗(N∗∗

θ , Pθ) = 1 − log2log2e and
lim supθ↑1 R∗(N∗∗

θ , Pθ) = 2 − log2e, and we characterize
this oscillating behavior. This technique is extensible toother
redundancy scenarios of the kind introduced in [23].

For distributions with light tails, one can use a technique
much like the technique of Theorem 2 in Section IV. First note
that this requires, as a necessary step, the ability to construct
a minimum maximal pointwise redundancy code for finite
alphabets. This can be done either with the method in [34] or
any of those in [23], the simplest of which uses a variant of
the tree-height problem [19], solved via a different extension
of Huffman coding. Simply put, the weight combining rule,
rather thanw(j) + w(k) or a · (w(j) + w(k)), is

w̃(j) = 2 ·max(w(j), w(k)). (15)

This rule is used to create an optimal code with lengths
N (r) for W (r) , {p(0), p(1), . . . , p(r), 2p(r + 1)}, assuming
a unary subtree for items with indexi ≥ r (and no other
items) is part of an optimal code tree. As in the coding
method corresponding to Theorem 2, the codewords for items
0 through r of this reduced code are identical to those of
the infinite alphabet. Each other itemi > r has a codeword
consisting of the reduced codeword forr + 1 followed by the
unary code fori− r − 1, that is,i− r − 1 ones followed by
a zero.

A sufficient condition for using this method is finding anr
such that

for all i < r, p(i) ≥ p(r)

and
for all j ≥ r, p(j) ≥ 2p(j + 1).

For suchj, pointwise redundancy is nonincreasing along a
unary subtree, as

n(j) + log2p(j) = n(j + 1) + log2(p(j)/2)

≥ n(j + 1) + log2p(j + 1).

The aforementioned coding method works because, for each
j, an optimal subtree consisting of the items with indexi ≥ j
and higher hasn(i) = n(j) − j + i; this subtree is optimal
because the weight of the root node ofany subtree cannot be
less than2p(j). A formal proof, similar to that of Theorem 2,
is omitted in the interest of space.

For a Poisson random variable,r = ⌈eλ⌉ − 1 satisfies this
condition, since, fori < r ≤ j, p(i) ≥ p(r) (as in [31]), and

p(j) =
j + 1

λ
p(j+1) ≥ r + 1

λ
p(j+1) ≥ ep(j+1) > 2p(j+1).

Thus such a random variable can be coded in this manner.
Note that other sufficient conditions can be obtained through

alternative methods. One simple rule is that any code for
which p(i) ≤ 2−ip(0) for all i > 0 will necessarily
have n(0) + log2p(0) minimized by letting n(0) = 1,
and this will be the maximum redundancy ifn(i) = i −
1 in general. For example, a unary tree optimizesP =
{0.6, 0.15, 0.15, 0.0375, 0.0375, . . .}, sincelog21.2 ≈ 0.263 is
a lower bound on maximal pointwise redundancy for any code
given p(1) = 0.6, and this bound is achieved for the unary
code. If viewed as a rule for a unary subtree, this is looser than
the above, since, unlike linear and exponential penalties,not
all subtrees of the subtree need be optimal. Other relaxations
can be obtained, although, as they are usually not needed, we
do not discuss them here.

VII. C ONCLUSION

The aforementioned methods for coding integers are ap-
plicable to geometric and light-tailed distributions withex-
ponential and related penalties. Although they are not direct
applications of Huffman coding, per se, these methods are
derived from the properties of generalizations of the Huffman
algorithm. This allows examination of subtrees of a proposed
optimal code independently of the rest of the code tree, and
thus specification of finite codes which in some sense converge
to the optimal integer code. Different penalties — e.g.,ϕ(x) =
x2, implying the minimization of

√
∑

i p(i)n(i)2 — do not
share this independence property, as an optimal code tree with
optimal subtrees need not exist. Thus finding an optimal code
for such penalties is more difficult. There should, however,be
cases in which this is possible for convexϕ which grow more
slowly than some exponential.

Another extension of this work would be to find coding
algorithms for other probability mass functions under the non-
linear penalties already considered, e.g., to attempt to use the
techniques of [33, pp. 103–105] for a more reliable algorithm.
Other possible extensions and generalizations involve variants
of geometric probability distributions; in addition to theone
we mentioned that is analogous to Proposition (2) in [27], there
are others in [28]–[30]. Extending these methods to nonbinary
codes should also be feasible, following the approaches in
[27] and [32]. Finally, as a nonalgorithmic result, it mightbe
worthwhile to characterizeall optimal codes — not merely
finding an optimal code — as in [26, p. 289].
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APPENDIX I
OPTIMAL MAXIMAL REDUNDANCY GOLOMB CODES FOR

LARGE θ

Let us calculate optimal maximal redundancy as a function
of θ ≥ 0.5:

R∗(N∗∗
θ , Pθ) = maxi n∗∗

θ (i) + log2pθ(i)

= 1 +
⌈

log2⌈− 1
log2θ ⌉

⌉

+

log2(1− θ)+
(

2

l

log2⌈−
1

log2θ
⌉

m

−
⌈

− 1
log2θ

⌉

)

log2θ

= 1−
⌈

− 1
log2θ

⌉

log2θ+

log2

(

− 1−θ
log2θ

)

−

2

l

log2

“

− 1
log2θ

”m

−log2(−
1

log2θ
)
+

⌈

log2

(

− 1
log2θ

)⌉

− log2

(

− 1
log2θ

)

= 2 + log2

(

− 1−θ
log2θ

)

−
⌈

− 1
log2θ

⌉

log2θ−
2
1−〈log2(−

1
log2θ

)〉 −
〈

log2

(

− 1
log2θ

)〉

,

where〈x〉 denotes the fractional part ofx, i.e., 〈x〉 , x−⌊x⌋,
since ⌈

log2⌈−
1

log2θ
⌉
⌉

=

⌈

log2

(

− 1

log2θ

)⌉

for θ > 0.25 (and thus forθ ≥ 0.5). Using the Taylor series
expansion aboutθ = 1, we find

log2

(

−1− θ

log2θ

)

= −log2log2e−(log2

√
e)(1−θ)+O((1−θ)2)

wheree is the base of the natural logarithm. Additionally,

−
⌈

− 1

log2θ

⌉

log2θ = 1 + O(1 − θ).

Note that this actually oscillates between1 and1+(1−θ)log2e
in the limit, so this first-order asymptotic term cannot be
improved upon. However, the remaining terms

2− 2
1−〈log2(− 1

log2θ
)〉 −

〈

log2

(

− 1

log2θ

)〉

(16)

oscillate in the zero-order term. Assigningx =
〈log2(−1/log2θ)〉, we find that (16) achieves its minimum
value, 0, at 0 and 1. The maximum point is easily
found via a first derivative test. This point is achieved at
x = 1− log2log2e, at which point (16) achieves the maximum
value1− log2e + log2log2e. Thus, gathering all terms,

lim inf
θ↑1

R∗(N∗∗
θ , Pθ) = 1− log2log2e = 0.4712336270 . . . ,

lim sup
θ↑1

R∗(N∗∗
θ , Pθ) = 2− log2e = 0.5573049591 . . . ,

and, overall,

R∗(N∗∗
θ , Pθ) = 3− log2log2e−

21−〈log2(−
1

log2θ
)〉 −

〈

log2

(

− 1

log2θ

)〉

+

O(1 − θ).

This oscillating behavior is similar to that of the average
redundancy of a complete tree, as in [35] and [36, p. 192].

Contrast this with the periodicity of the minimumaverage
redundancy for a Golomb code: [37]

R̄(N∗
θ,1, Pθ) = 1− log2log2e− log2e +

22−2
1−〈log2(− 1

log2θ
)〉

−
〈

log2

(

− 1

log2θ

)〉

+

O(1 − θ)

where N∗
θ,1 is the optimal code for the traditional (linear)

penalty.

APPENDIX II
GLOSSARY OFTERMS

Notation Meaning
a Base of exponential penalty
b(x, k) (x + 1)th codeword of complete binary code

with k items (i.e., the order-preserving
[alphabetic] code having the first2⌈log2k⌉ − k
items with length⌊log2k⌋ and the last
2k − 2⌈log2k⌉ items with length⌈log2k⌉)

c(i) Codeword (for symbol)i
C Code{c(i)}
e Base of the natural logarithm (e ≈ 2.71828)
Gk Golomb code with parameterk, one of the

form {1⌊j/k⌋0b(j mod k, k) : j ≥ 0}
Hα(P ) Rényi entropy(1− α)−1log2

∑

i∈X p(i)α

(or, if α ∈ {0, 1,∞}, the limit of this)
i∗∗ Index of the codeword that, among a

given code’s inputsi ∈ X , maximizes
pointwise redundancy,n(i) + log2p(i)

j mod k j − k⌊j/k⌋
La(P, N) Penaltyloga

∑

i∈X p(i)an(i)

n(i) Length of codeword (for symbol)i
N {n(i)}, the lengths for a given code
n(r)(i) Length of codewordi of an optimal code

minimizing maximum redundancy forW (r)

N (r) {n(r)(i)}, the lengths of an optimal code
minimizing maximum redundancy forW (r)

n∗(i) Length of codewordi of an optimal code
for an exponential penalty,L

(n∗
θ,a(i)) (...if θ anda are specified)

N∗ {n∗(i)}, the lengths of an optimal code
(N∗

θ,a) (...if θ anda are specified)
n∗

θ,a,d(i) Length of codewordi of an optimal code
minimizing dth exponential redundancy

N∗
θ,a,d {n∗

θ,a,d(i)}, the lengths of an optimal code
minimizing dth exponential redundancy

n∗∗(i) Length of codewordi of an optimal code
minimizing maximum redundancy

N∗∗ {n∗∗(i)}, the lengths of an optimal code
minimizing maximum redundancy

O(·) Order of · asymptotic complexity
p(i) Probability of input symboli
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continued
Notation Meaning
(pθ(i)) (...for geometric distr with parameterθ)
(pλ(i)) (...for Poisson distr with parameterλ)

P {p(i)}, the input probability mass function
(Pθ) (...for geometric distr with parameterθ)
(Pλ) (...for Poisson distr with parameterλ)

R̄a(N, P ) La(P, N)−Hα(a)(P ), the average
pointwise redundancy

Rd(N, P ) d−1log2

∑

i∈X p(i)2d(n(i)+log2p(i)),
the dth exponential redundancy

R∗(N, P ) maxi∈X [n(i) + log2p(i)], the maximum
pointwise redundancy

R The set of real numbers
R+ The set of positive real numbers
s0 Upper bound ons∗

s∗ ln a for a corresponding to optimal coding
for buffer overflow

w(i) Weight (for symbol)i
W {w(i)}, the set of weights
w(r)(i) p(i) for i ≤ r, 2p(r + 1) for i = r + 1

W (r) {p(0), p(1), . . . , p(r), 2p(r + 1)}
X Input alphabet (usuallyX∞ = {0, 1, . . .})
α(a) 1/(1 + log2a) (parameter for Rényi entropy)
θ Geometric distr parameter (pθ(i) = (1− θ)θi)
λ Poisson distr parameter (pλ(i) = λie−λ/i!)
Φ Golden ratio,12 (1 +

√
5)
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