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Abstract— This paper presents new lower and upper  Huffman found a method of producing an optimal
bounds for the compression rate of binary prefix codes code by building a tree in which the two nodes with
optimized over memoryless sources according to various |owest weight (probability) are merged to produce a
nonlinear codeword length objectives. Like the most well- 44e with their combined weight summed [2]. On the
known redundancy bounds for minimum average redun- -, .o.qi0 of the twenty-fifth anniversary of the Huffman

dancy coding — Huffman coding — these are in terms . . .
of a form of entropy and/or the probability of an input algorithm, Gallager introduced bounds in terms of the

symbol, often the most probable one. The bounds here, MOSt probable symbol which improved on the unit-
some of which are tight, improve on known bounds Sized redundancy bound [3]. Since then, improvements
of the form L € [H,H + 1), where H is some form in both upper and lower bounds given this most probable
of entropy in bits (or, in the case of redundancy ob- symbol [4]-[8] have yielded bounds that are tight when
jectives, 0) and L is the length objective, also in bits. this symbol's probability is at least/127 (and close-
The objectives explored here include exponential-averageo-tight when it has lower probability). Tight bounds
length, maximum pointwise redundancy, anhd exponential- 4154 exist for upper and lower bounds given the less-
average pointwise _redundancy (also Ca"edt. exponential specific information of amrbitrary symbol’s probability
redundancy). The first of these relates to various problems . .
involving queueing, uncertainty, and lossless communica- [9], [10]. Such bounds are_ useful for QU'Ck'Y boqndlng
tions; the second relates to problems involving Shannon the performance of an optimal code without running the
coding and universal modeling. For these two objectives @lgorithm that would produce the code. The bounds are
we also explore the related problem of the necessary andfor a fixed-sized input alphabedsymptotidreatment of
sufficient conditions for the shortest codeword of a code redundancy for block codes of growing size, based on
being a specific length. binary memoryless sources, is given in [11].

Index Terms—Huffman codes, optimal prefix code, Others have given consideration to objectives other
queueing, Renyi entropy, Shannon codes, worst case min- than expected codeword length [£2,6]. Many of these
imax redundancy. nonlinear objectives, which have a variety of applica-

tions, also have unit-sized bounds but have heretofore
I. INTRODUCTION lacked tighter closed-form bounds achieved using a sym-

Since Shannon introduced information theory, we hat®! probability and, if necessary, some form of entropy.
had entropy bounds for the expected codeword lengffe address such problems here, finding upper and lower
of optimal lossless fixed-to-variable-length binary cadeBounds for the optimal codes of given probability mass
The lower bound is entropy, while the upper bound fsinctions for nonlinear objectives. “Optimal” in  this
one bit greater — corresponding to a maximum averafaper refers to optimality over the objective in question,
redundancy of one bit for an optimal code — thuBot necessarily over the linear objective of expectation.
yielding unit-sized bounds. The upper bound follows A lossless binary prefix coding problem takes a prob-
from the suboptimal Shannon code, a code for whi@bility mass functionp = {p;}, defined for alli in the

the codeword length of an input of probability is inputalphabeft, and finds a binary code for. Without
[—log, p] [1]. loss of generality, we consider anitem source emitting

symbols drawn from the alphabeét = {1,2,...,n}
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The goal of the traditional coding problem is to findhe i" leaf corresponds to the codeword of teinput
a prefix code minimizing expected codeword lengtitem, and thus has weight(i), whereas the weight of
> icx Pili, or, equivalently, minimizing average redunparent nodes are determined by the combined weight of
dancy the corresponding merged item.

R(,p) & Zpili ~ H(p) = Zpi(li Flep) (1) We began by stating that an optimi4P* must satisfy
i€x i€x H(p) <) pl™ < H(p) +1

whereH is — Y.y pilg p; (Shannon entropy) ang = tex
log,. A prefix code— also referred to as eomma-free or, equivalently,
code a prefix-free codeor aninstantaneous code- is 0< R(lopt p) < 1.
a code for which no codeword begins with a sequence - ’
that also comprises the whole of a second codeword.Less well known is that simple changes to the Huffman

This problem is equivalent to finding a minimum-algorithm solve several related coding problems which
weight external path among all rooted binary trees, dagtimize for different objectives. We discuss three such
to the fact that every prefix code can be representedpisblems, all three of which have been previously shown
a binary tree. In this tree representation, each edge frédnsatisfy redundancy bounds for optiniadf the form
a parent node to a child node is labeledleft) or 1 ~ o3 ~
(right), with at most one of each type of edge per parent H(p) < L(p,l) < H(p) + 1
node. A leaf is a node without children; this corresponds o
to a codeword, and the codeword is determined by the 0<R(lp <1
path from the root to the leaf. Thus, for example, a Ie%
that is the right-edgelj child of a left-edge ) child
of a left-edge () child of the root will correspond to
codeword)01. Leaf depth (distance from the root) is thus

codeword length. If we represent external path weig iven p;, the probability of the most likely item, the

as .ZZEX w(i)ls, t_he weights are the probabllmes_ ("e'Huffman problem improvements find functiorigp, )
w(i) = p;), and, in fact, we refer to the problem 'nDUt%lnd/orw( ) such that
as{w(7)} for certain generalizations in which their sum, p1
> iex w(i), need not bd. 0 <o(p1) < R(I°P" ) p) < @(py) < 1.
If formulated in terms ofl, the constraints on the . L , .
T . L The smallesty, tight over mosi, is given in [8], while
minimization are the integer constraint (i.e., that codes,.” =~ . ; . .
must be of integer length) and the Kraft inequality [13]; tighto is given in [6]. Tight bounds given any valyg
h p, would yield alternative functiong'(p;) and&’(p;)

that is, the set of allowable codeword length vectors is
such that

L, 2 {l € Z" such thatz 27l < 1} . 0 < d'(pj) < RO, p) < &'(pj) < 1.

= In this case, tight bounds are given by [10], which also

_B_ecause Huffman’s algorithm [2] finds codes min'éddresses lower bounds given thastprobable symbol,
mizing average redundancy (1), tmeinimum-average which we do not consider here

redundancy problenitself is often referred to as the In the following, we wish to find functions, &, &,
“Huffman probleni even though the problem did Not, nd/ore’ such that

originate with Huffman himself. Huffman’s algorithm o

is a greedy algorithm built on the observation that the 0<d(p1) <R(,p) <w(p1) <1

two least likely items will have the same length angnd/or

can thus be considered siblings in the coding tree. A o

reduction is thus made in which the two items of weights 0<d(p;) <R(,p) <d(pj) <1

w(i) and w(j) are considered as one with combined, . . se of redundancy objectives, and to find
weight w(i) + w(j). The codeword of the combineds, 0= < ch that ’ Y
item determines all but the last bit of each of the items’ B S

combined, which are differentiated by this last bit. This 0 < 6(H(p),p1) < L(p,1) < &(H(p),p1) < 1
reduction continues until there is one item left, an%’nd/or
assigning this item the null string, a code is defined for 3

all input items. In the corresponding optimal code tree, 0 < &'(H(p),p;) < L(p,1) < &' (H(p),p;) < 1

r some entropy measuré and cost measurg, or for
some redundancy measuke

In this paper, we improve these bounds in a similar
anner to improvements made to the Huffman problem:



in the case of other length objectives. as a solution to this maximum pointwise redundancy
All of the nonlinear objectives we consider haveroblem. A subsequent solution to the problem is a
been shown to be solved by generalized versions \@riation of Huffman coding [18] derived from that in
the Huffman algorithm [14]-[18]. These generalization®2], one using combining rule
change the combining rule; instead of replacing items . . Ay A . )
i and j with an item of weightw(i) + w(j), the FHw(@), w(7)) = 2max(w(i), w(z)). 3)
generalized algorithm replaces them with an item of Applications in prior literature: The solution of this
weight f(w(7), w(j)) for some functionf. The weight worst-case pointwise redundancy problem is relevant to
of a combined item (a node) therefore need not be eqagtimizing maximal (worst-case) minimax redundancy, a
to the sum of the probabilities of the items merged toniversal modeling problem (as in [23, p. 176]) for which
create it (the sum of the leaves of the correspondititge setP of possible probability distributions results in
subtree). Thus the sum of weights in a reduced problemnormalized “maximum likelihood distribution.” [20]
need not bd, unlike in the original Huffman algorithm. More recently Gawrychowski and Gagie proposed a sec-
In particular, the weight of the rooty,..¢, need not bé. ond worst-case redundancy problem which also finds its
However, we continue to assume that the sunmpfits solution in minimizing maximum pointwise redundancy
to the coding problems will bé (with the exception of [24]. For this problem, normalization is not relevant and
reductions among problems). one allows any probability distribution that is consistent
The next section introduces the objectives of interestjth an empirical distribution based on sampling.
along with their motivations and our main contributions. Prior and current results: The first proposed algo-
These contributions, indicated by, are bounds on rithm for the maximum pointwise redundancy problem
performance of optimal codes according to their ofis a codeword-wise improvement on the Shannon code
timizing objectives, as well as related properties. Wa the sense that each codeword is the same length as or
defer the formal presentation of these contributionsne bit shorter than the corresponding codeword in the
along with proofs, until later sections, where they ar@hannon code. This method is called “generalized Shan-
presented as theorems and corollaries, along with then coding.” (With proper tie-breaking techniques, the
remarks immediately following them and associated figtuffman-like solution guarantees that each codeword, in
ures. These begin in Section 1ll, where we find tightirn, is no longer than the generalized Shannon code-
exhaustive bounds for the values of minimized maximumord. As both methods guarantee optimality, this makes
pointwise redundancy (2) and correspondingn terms no difference in the maximum pointwise redundancy.)
of p;. Pointwise redundancy for a symbais /; +1g p;. Notice a property true of Shannon codes — generalized
In Section IV, we then extend these to exhaustive -ef not — but not minimum average redundancy (Huff-
but not tight — bounds for minimized" exponential man) codes: Because any given codeword has a léngth
redundancy (4), a measure which takes-axponential not exceedind —lg p;|, this length is within one bit of
average [19] of pointwise redundancy (where, in thihie associated input symbol's self-information]g p;.
case, parametet is d). In Section V, we investigate theThis results in bounds of; . (p) € [0,1), which are
behavior of codes with minimized exponential averagmproved upon in Section Ill. The bound can also be
(6), including bounds and optimizing in terms ofp;. considered a degenerative case from a result of Shtarkov
[23, p. 176], that for which the probabilities are fully
Il. OBJECTIVES MOTIVATIONS, AND MAIN RESULTS known.
A. Maximum pointwise redundancit) _The aforementloneo! papers contain further analysis of
o this problem, but no improved closed-form bounds of
The most recently proposed problem objective Wge vne introduced here. Here results are given as strict
consider is that formulated by Drmota and Szjnher and lower bounds in Theorem 1 in Section I1I-A.
pankowski [20]. Instead of minimizing average redurgyqifically, whether considering known in general or

v - A
dancy i(l, p) = 5 ,cx pi(li +1gpi), here we minimize o0, in particular, this problem has upper bound
maximum pointwise redundancy )

1% _ —Dj ) )
R*(l,p) = I}éaj@((li +1gp;). (2) w™(p;) = max <1 +1g 1T_9-% s Aj T+ lgp]> (=)

An extension of Shannon coding introduced by Blumeyhere this andv*(p1) = w™(p1) are tight bounds. Also,
and McEliece [21, p. 1244] to upper-bound the problethhas lower bound

considered in Section II-C was later rediscovered and ,, . 1—p;

efficiently implemented by Drmota and Szpankowski ° (pj) = min </\j +1gpj,lg 15 Q—Aj+1> (=)



for p; < 0.5, and1 + lg p; otherwise, and, again, thisgiven in the literature [6] (identical to’ [10]). For any
and o*(p;) = o*(p;) are tight. Here\; = [—1gp;], probability p; in input distributionp and anyd > 0,
the results are illustrated in Fig. 1, and the values for _ d *
which the maximum and minimum apply are given in 0(p;) < Rope(P) < w™(py) (=2)
the theorem (i.e., the bounds are tight). as illustrated in Fig. 2 and detailed in the corollary.

Further results here include those regarding codewdrtrthermore, any upper bound on minimum average
length; Theorem 2 states that any optimal code will havedundancy — e.g.w(p1) [8] or &'(p;) [9], [10] —
l; <wvif p; > 27" and that any probability distribution similarly boundsd™ exponential redundancy witt €
with p; < 1/(2” — 1) will be optimized by at least one (—1,0).
code withl; > v.

C. Exponential averagel(,)

B. d™ exponential redundancyRt) A related problem is one proposed by Campbell

A spectrum of problems bridges the objective of Huft2%): [27]- This exponential problem, given probability
man coding with the objective optimized by generalize§2SS functionp anda & (0,00)\1, is to find a code
Shannon coding using an objective proposed in [25] afdM™M#IN9

solved for in [15]. In this particular context, the range of Ly(p,1) £ log, Zpiali, (6)
problems, parameterized by a variallecan be called icX

d" exponential redundancy [18]. Such problems involvg this case our parameteris the base, rather than the
the minimization of the following: exponential scaling factor, although much prior work

1 1 , , does express this problem in the equivalent alternative
Rd(p, l) A2 E lg Zpll+d2dll — E lg Zpi2d(ly,+1gpz). form’

< < 4) Lo(p,1) = % gy pi2leh,
Although positive parametef is the case we consider (ga) i€X
most often hered € (—1,0) is also a valid minimization The solution to this [14], [15], [28] uses combining rule
problem. If we letd — 0, we approach the average . Ny A . .
redundancy (Huffman’s objective), whilé — oo is fa(w(i), w(7)) = aw(i) + aw(j). ()
maximum pointwise redundancy [18]. The combinind change of variables transforms th&' exponential
rule, introduced in [15, p. 486], is redundancy problem into (6) by assigning= lg d and
o using input weightsw(i) proportional t0p}+d, which
Fw(i), w(j)) £ (2dw(z‘)1+d+2dw(j)1+d> 1. (5) vyields (5). We illustrate this precisely in Section IV
) o . in (18), which we use in Section V to find initial
Prior and current results and applications: This i\ 5r0ved entropy bounds. These are supplemented by
redundancy objective is less analyzed than the Oth%r&ditional bounds for problems with € (0.5,1) and

me_nnon_ed here, I|I_<ely be.cause there are no_dl_rect appli-~ 2a/(2a + 3) (as illustrated in Fig. 3 at the end of
cations in the published literature. However, it is closel¢ation V).

related not only to average redundancy and to maXimumAppIications (a < 1): Itis important to note here that

pointwise redundancy, but also to the more applicable s an average of growing exponentials, while: 1
objective co_nsi(_jered in_Secti(_)n II-C. Solution properties 5 average of decaying exponentials. These two sub-
of these objectives — including redundancy bounds —:qhlems have different properties and have often been
can therefore be related vi#' exponential redundancy.considered separately in the literature. An application
In particular, as we show in Section IV, the upper bound; the decaying exponential variant involving single-

for maximum pointwise redupdancy also improves upQh ot communications has a communication channel with
the already-known bound fef" exponential redundancy,; window of opportunity of a total duration (in bits)

Rffpt(p) 2 in Rglpt(l,p) €[0,1). distribu_tt_ad geometrically with parameter [29]. The
n probability of successful transmission is
Givend > 0, we show in Corollary 1 that any upper n
bound on minimax pointwise redundancy and any lower P[success= ale @l = Zpiali’- (8)
bound on minimum average redundancy serve to bound i=1
d™ exponential redundancy. Fora > 0.5, the unit-sized bound we improve upon is in

Specifically, consider* given above (identical ta”*) terms of Rényi entropy, as in (16); the solution is trivial
and lower bound on minimum average redundancyfor a < 0.5, as we note at the start of Section V.



Applications (¢ > 1): We add an additional obser-this paper are the first of their kind for nontraditional
vation on a modified version of this problem: Suppogduffman codes, bounds which are, fdy, functions of
there are a sequence of windows of opportunities rathmsth entropy angh;, as in the traditional case. However,
than only one. The probability that a window staythey are not the first improved bounds for such codes.
open long enough to send a message of lengiha!/, More sophisticated bounds on the optimal solution for
since each additional bit has independent probabilitythe exponential-average objective are given in [21] for
of getting through. Thus, giveh, the expected numbera > 1; these appear as solutions to related problems
of windows needed to send a message — assuming itasher than in closed form, however, and these problems
necessary to resend communication for each window require no less time or space to solve than the original
is the multiplicative inverse of this. Overall expectatioproblem. They are mainly useful for analysis. Bounds

is therefore given elsewhere for a closely related objective having
n a one-to-one correspondence with (6) are demonstrated
E[N] = Zpia_“ =g L (P, under the assumption that > 0.4 always impliesl;
i=1 can bel for the optimal code [33]. We show that this

Although such a resending of communications is usually not necessarily the case due to the difference between
not needed for a constant message, this problem isha exponential-average objective and the usual objective
notable dual to the first problem. In this dual problenaf an arithmetic average.
we seek to minimize the expectation of a growing expo- Specifically, Theorem 3 states that, ferc (0.5,1],
nential of lengths rather than maximize the expectatiencode with shortest codeword of lengths optimal if
of a decaying exponential. p1 > 2a/(2a + 3). Furthermore, for > 1, no value of
Originally, the e > 1 variation of (6) was used inp; € (0,1) guarantee$, = 1, and, fora < 0.5, there is
Humblet's dissertation [30] for a queueing applicationlways an optimal code withy = 1, regardless of the
originally proposed by Jelinek [31] and expounded upadnput distribution. This results in the improved bounds
in [21]. This problem is one in which overflow proba-of Corollary 3; whem € (0.5,1) andp; > 2a/(2a+3),
bility should be minimized, where the source producegptimall satisfies
symbols randomly and the codewords are temporarily 1 n
stored in a finite buffer. In this problem, there exists a? [aaHﬁ(”) —p?] “tap < (Zpiali>
an a > 1 such that optimizingL,(p,l) optimizes ) i=1
this problem; the correct is found through iteration. <a [aaHa(p) _pa} o ap
. . ; = 1 1
The Huffman-like coding method was simultaneously
published in [14], [15], [28]; in the last of these, Humblewherea = 1/(1 + Iga), and Rényi entropy
noted that the Huffman combining method (7) finds the 1 n
optimal code witha € (0,1) as well. Ha(p) = 18 > o
More recently, thea > 1 variation was shown to =1
have a third application [32]. In this problem, the trudhis is an improvement on the unit-sized bounds,
probability of Fhe source is not known; it is only knovyn H.(p) < log, szah < Hu(p) + 1.
that the relative entropy between the true probability cx

and p IS W'thg: somr(]a knpwn bour;d. Ads In _Humpletsm addition, we show in Corollary 2 that a reduction from
queueing problem, there Is an> 1, found via iteration, -y problem tod" exponential redundancy extends the

sugh_ that odptlmlzmgLa(p,ll).salves trk]\e probltim. nontrivial bounds for the redundancy utility to nontrivial
rior and current results: Note thata — 1 corre- l%ounds for any: > 0.5, resulting in

sponds to the usual linear expectation objective. Pro
lems fora nearl are of special interest, sinee| 1 corre- 0 < L°PY(p) — Hy(p) < @ (p?2(“‘1)Ha (1’)> (=)
sponds to the minimum-variance solution if the proble

has multiple solutions — as noted in [15], among others

— while a 1 1 corresponds to the maximum-variance 0 < L*'(p) — Ha(p) < &' (p?Z(a_l)Hc‘(p)> (=)

solution.
: : for .5,1) and
Most of the aforementioned improved bounds are a€(05,1)

)

based on a given highest symbol probabilipy,. We o p?‘2(°‘_1)H‘*(p)) < L%PY(p) — Hy(p)
thus give this case special attention and also discuss < w*< a2(a_1)Ha(p)) (=)
the related property of the length of the most likely - Pj

codeword in these coding problems. The bounds far a > 1.



Il. MAXIMUM POINTWISE REDUNDANCY the items combined to form it. Thus, after the first two
weights are combined, all remaining weights, including
the compound weight, are no less than either of the two
original weights.

Consider the second property. After merging the two
least weighted of. (possibly merged) items, the property
holds for the resultingn — 1 items. For then — 2

A. Maximum pointwise redundancy bounds

Shannon found redundancy bounds s, (p), the
average redundandy(l,p) = >, v pil; — H(p) of the
average redundancy-optimal The simplest bounds for
minimized maximum pointwise redundancy

R}, (p) £ min max (I; + lg p;) untouched itemg; 4+ lg w(i) remains the same. For the

leL, iex two merged items, let, ; and w(n — 1) denote the

are quite similar to and can be combined with Shannomisaximum depth/weight pair for item — 1 and(,, and
bounds as follows: w(n) the pair forn. If I’ andw’ denote the depth/weight

_ . pair of the combined item, then
0 S Ropt(p) S Ropt(p) <1 (9)

' +lgw = 1, —1+1g(2 - 1),
The average redundancy case is a lower bound becausJé s +lg(2max(w(n = 1), w(n)))
= max(lp—1 +1lgw(n —1),l, +1gw(n)).

the maximum R*(, p)) of the values [ + lgp;) that

average to a quantityR(Z,p)) can be no less thanThys the two trees have identical maximum redundancy,
the average _(a fact that holds for dllarld p). The \which is equal tolgwee; Since the root node is of
upper bound is due to Shannon cdflép) < [—Igpil depth 0. Consider, for examplep = (0.5,0.3,0.2),
resulting in which has optimal codewords with lengths= (1, 2, 2).

R (p) < R*(I(p), p) = ie&}é{([_ lgpi] +lgps) < 1. The first combined pair has

/ ! i

A few observations can be used to find a series of irrll—Jr lgu’ =1+1g06 = max(2+150.3,2+130.2)

proved lower and upper bounds on optimum maximum = max(l +1gp2,l3 +1gps).
pointwise redundancy based on (9): This value is identical to that of the maximum redun-
Properties, Maximum Pointwise Redundancy: dancy,lg 1.2 = 1g wyoor.

_ Lemma 1:Suppose we apply (3) to find & Huffman- rqr the third property, the first combined pair yields
like code tree in order to minimize maximum poiNtWisg, \yejght that is no less than the combined probabilities.
redundancy &(1, p) givenp). Then the following holds: 11,5 "via induction, the total probability of any (sub)tree

1) Items are always merged by nondecreasing weighki.no greater than the weight of the (sub)tree.

2) The weight of the rootu,,. of the coding tree  |n order to show the final property, first note that
determines the maximum pointwise redundancy;. . 2% =1 for any tree created using the Huffman-
R*(l,p) = lg wroot- like procedure, since all internal nodes have two children.

3) The total probability of any subtree is no great@ow think of the procedure as starting with a (priority)
than the total weight of the subtree. queue of input items, ordered by nondecreasing weight

4) If p1 < 2p,—1, then a minimum maximum point- from head to tail. After merging two items, obtained
wise redundancy code can be represented byfrgm the head of the queue, into one compound item,
complete tregthat is, a tree with leaves at depthhat item is placed back into the queue as one item,
llgn] and[lgn] only (with Y=, 27% = 1). (This  put not necessarily at the tail; an item is placed such
property is similar to the property noted in [34] fotthat its weight is no smaller than any item ahead of it
optimal-expected-length codes of sources termg@d is smaller than any item behind it. In keeping items
quasi-uniformin [35].) ordered, this results in an optimal coding tree. A variant
Proof: We use an inductive proof in which basef this method can be used for linear-time coding [18].

cases of sized and 2 are trivial, and we use weight In this case, we show not only that an optimal com-
function w instead of probability mass functiop to plete tree exists, but that, given aritem tree, all items
emphasize that the sums of weights need not necessatipt finish at levellg n| appear closer to the head of the
add up tol. Assume first that all properties here are trugueue than any item at levélgn| — 1 (if any), using
for trees of sizex — 1 and smaller. We wish to show thata similar approach to the proof of Lemma 2 in [29].
they are true for trees of size Suppose this is true for every case with- 1 items for
The first property is true becaugé&(w(i),w(j)) = n > 2, thatis, that all nodes are at levelg(n —1)] or
2max(w(i),w(j)) > w(i) for any i and j; that is, a [lg(n — 1)], with the latter items closer to the head of
compound item always has greater weight than eithertbe queue than the former. Consider now a case with



nodes. The first step of coding is to merge two nodesxpdel’(p) by making the IengtHg of the j™ known
resulting in a combined item that is placed at the emmbdeword);, and taking this length into account when
of the combined-item queue, as we have asserted tHasigning the rest of the code. The code satisfies the
p1 < 2p,—1 = 2max(p,—1,pn). Because it is at the endKraft inequality, and thus, as a valid code, its redundancy
of the queue in thes — 1 case, this combined node is ats an upper bound on the redundancy of an optimal code.
level [lg(n —1)| in the final tree, and its children are atNote that

level 1 + |lg(n — 1) = [lgn]. If n is a power of two, max(l?(p) Flap:)

the remaining items end up on levgln = [lg(n —1)], i#j

satisfying this lemma. If» — 1 is a power of two, they —pj

end up on levelg(n — 1) = [lgn], also satisfying the = max qlg l—2%) 2_&% + 1gp,—> (10)
lemma. Otherwise, there is at least one item ending up 1—p;

at level[lgn| = [lg(n—1)] near the head of the queue, < 1+1g 10N

followed by the remaining items, which end up at Ievellhere are two cases:
llgn| = ng(n_— _1)J. In_any case, all properties of the a) p; € [2/(2> + 1),1/25-1): In this case, the
lemma are satisfied for items, and thus for any numbermaximum pointwise redundancy of the itejnin code

of items. [ - . )
. 7 I tharl +1g((1 — p,;)/(1 —27%)). Thus,
We can now present the improved redundancy boun(aég)tés(gi) ess thart +Ig((1 —p;)/( ) us
Bounds, Maximum Pointwise Redundancy: ' ‘
Theorem 1:For any distribution in which there exists Ropt(p) < R*(P(p),p) = A\j +1gp;.
ap; > 2/3, Répt(p) = 1—|—1gpj. If p; € [05,2/3), then s Ai—1 ;
" If \; > 1andp; € [2/(2% + 1),1/2% ), consider
opt(P) € [1+1gp;, 2+1g(1—p;)) and these bounds are. —Jl and probgé)ility [m/eEss funct)ion/ )
tight not only for generap;, but forpy, in the sense that’ =
we can find probability mass functions with the given

p1 = p; achieving the lower bound and approaching the p=|m l—pi—e l—p1—e .
upper bound. Define\; = [—1gp;]. Thus ), satisfies 2 —2 7T 2 — 2
pj € [27%, 27N+ and \; > 1 for p; € (0,0.5); in 201 —2

this range, the following bounds faR? ,(p) are tight

: ) opt wheree € (0,1 — p;2M~1). Becausep; > 2/(2M + 1),
for generalp; andp, in particular: €€ p1 ) @1 22/(2% +1)

L—pi2n L < (1 —p1—e)/2M —2)

Pj Zpt(p)

) ) - and p,_1 > p,. Similarly, p; < 1/2%~1 assures that
[W’ 2Aj_1> [)\j +lgp;, 1 +1g 1_;’@) p1 > pa2, SO the probability mass function is monotonic.
[ 1 9 > [l (R PO £ > Since2p,_1 > p1, by Lemma 1, an optimal code for this

2% —17 2% 41 ERECI VAR 812 % probability mass function i$; = \; for all 4, achieving
|:2Aj2+17 2)\}—1) |:1g 1__12_7;A)J,:+17)\j + lgp]:| R*(l>p) = /\1 + 1gp1 SlnCEj = 1 has the maximum

pointwise redundancy, this upper bound is tight whether
consideringp; or general;.

Proof: The key here is generalizing the unit-sized  b) p; € [1/2%,2/(2% + 1)): In this case, (11)
bounds of (9). immediately results in

1) Upper bound:Before we prove the upper bound,. < P o oA
note that, once proven, the tightness of the upper boun&’t(p) < B (F(p),p) < 1+1g((1 —p;)/(1 =27%)).

in [0.5,1) is shown via Again consideringj = 1, the probability mass function
p=(pj,1—pj—¢€¢) . )
for which the bound is achieved /3, 1) for anye € p=|p, 211)1 _1 <, 2_)\1pl _16,5
(0,(1 — pj;)/2] and approached if0.5,2/3) ase | 0. — —
Let us define what we call g#Shannon code -1
‘ A2 [—lgp;] i=3j illustrates the tightness of this bound fer | 0. For
A ):{ ’ e (: 1j_2ixj o, sufficiently smalle, this probability mass function is
{_ & <p’ ( 1=p; )ﬂ 17 monotonic ang; < 2p,_1. Lemma 1 then indicates that
This code was previously presented in the context ah optimal code hal = A, fori € {1,2,...,n—2} and

finding averageredundancy bounds given any probas,_; = [,, = A\; + 1. Thus the bound is approached with
bility [9]. Here it improves upon the original Shannoritem n — 1 having the maximum pointwise redundancy.



for some fixedy € {1,2,...}. If py > 27#, R*(l,p) >
Ilh +1gp1 = p+ 1gpr. If pr < 27#, consider the
weights at levelu (i.e., u edges below the root). One
of these weights ig;, while the rest are known to = os- R ,
sum to a number no less than— p;. Thus at least & | LS
one weight must be at leagt — p;)/(2# — 1) and

0.8

2) Lower bound: Here we first address the lower 1“\\[\\ S . 7
bound givenp;. Consider all optimal codes with = p o9r | !
\\ \\ //
\ \ /
\ \ s
\ /

0.7

RY(l,p) = p+1g((1 —p1)/(2" = 1)). Thus,
0.3r-
* 1- b1
Ropt(p) > ®+ lgmax <p1, o _ 1> 0.2}
for I; = pu, and since this can be any positive integer, Il
1 pl 00 O“l O‘.Z O“3 O‘.4 0‘.50r O‘.G 0‘.7 O‘.8 0‘.9 Z‘l
* . - P10Orp;
R (p) 2 el <u + lg max <p1, 1 1>>

Fig. 1.  Tight bounds on minimum maximum pointwise redun-
which is equivalent to the bounds provided. dancy, including achievable upper bounds (solid), apgvable upper

For arbitraryp;, the approach is similar, but a mOdi'?n?ﬁggs\,;ﬁ?;:?g;; afh'?vfbgig"z‘évgtt 5’:S“h”edd‘°‘) (dotted), and dater-
fication is required to the above when < 27+; we are 'Th = '
no longer guaranteed to hageé nodes on level: (where
u = 1l;). Instead, consider the set of leavésbove level s achieves the lower bound for this range € p+1).
p and the set of node&/ on level ;. Let A’ be a set gjmjlarly
of nodes (not actually in the optimal tree) such that, for
each leafi in A, there are2#~" nodes inA’, each one I o
having weightp;2~*. Thus the combined probability pr, 27" 27 2
of A’ remains the same and the combined weight of 26412
A’ and NV is no less thanl. The cardinality of the has a ﬁxed-|ength 0ptima| Coding tree fgr, ¢
combined sets — which can be considered as the Ieyp}gua 1/(2* — 1)), achieving the lower bound for this
of an extended tree — 8", for the same reason thatange Q= p). m
this is the number of nodes on the level for the case ofThe unit-sized bounds of (9) are identical to the

knownp;. Thus the maximum weight of tH#' —1 items  tight bounds at (negative integer) powers of two. In
in A/UN\{j} is at least its average, which is, in turn, aiddition, the tight bounds clearly approaéhand 1
least(1 —p;)/(2" —1). If that item is inV, it follows, asp. | 0, similarly to those for average redundancy
as above, that?*(l,p) > p + lg((1 — p;)/(2* — 1)). [10]. Bounds found knowing; are different for the
If it is not, then it — along with2/~" items of the two utilities, however, the average redundancy upper
same weight — corresponds to an itenwith p; > and lower bounds being very close (aboLisé apart)
(1—pj)/ (2% —21—#). In this case, too, [3], [6], [8]. For larger given probabilities, note that,
X . _ above 0.5, p; and p, bounds are identical since any
R (p) = L+l _pj)/@h -2 such probability musjt be the most probable. Approaching
= p+1g((1—p;)/(2" —1)). 1, the upper and lower bounds on minimum average
redundancy coding converge but never merge, whereas
the minimum maximum redundancy bounds are identical

Thus the lower bound is identical for any as it is

for p;.
for p; > 2/3.
Forp; = p; € [1/(2#T! —1),1/2#) for some p, p1=2/3
consider S _ o
B. Minimized maximum pointwise redundancy codeword
lengths
I-m I—p . - :
Pl — o oudt — g | In addition to finding redundancy bounds in terms of
p1 Or pj, it is also often useful to find bounds on the
2u+1_2

behavior ofl; in terms ofp; (for j = 1 or generalj),
By Lemma 1, this has a complete coding tree — in th&s was done for optimal average redundancy in [36] (for
case withl; one bit shorter than the other lengths — ang = 1).



Lengths, Maximum Pointwise Redundancy: a direct consequence @f < 1/(2” — 1). Thus, if we
Theorem 2:Any code with lengthsl minimizing replace this code with one for whidh = v, maximum
max;cx(l; + lgp;) over probability mass functiop, redundancy is notincreased and thus the new code is also
wherep; > 27%, must haved; < v. This bound is tight, optimal. The tightness of the bound is seen by applying
in the sense that, fop; < 27%, one can always find Lemma 1 to distributions of the form
a probability mass function witly > ». Conversely, if

p; < 1/(2¥ — 1), there is an optimal code withy > v, 1—p 1—py
and this bound is also tight. P= P o5 o
Proof: Supposep; > 27" andl; > 1+ v. Then
Ry (p) = R*(L,p) > I; +1gp; > 1, contradicting the 22
unit-sized bounds of (9). Thus < v. for p; € (1/(2¥—1),1/2v~1). This distribution results in
For tightness of the bound, suppgses (277~1,27%) I} = v—1and thusRk}  (p) = v+lg(1—p1)—1g(2" -2),
and considern = 21 and which no code withl; > v — 1 could achieve. [ |
In particular, ifp; > 0.5, [; = 1, while if p; < 1/3,
p= (p1,2”1, U p1) there is an optimal code witlh; > 1. One might
~ wonder aboup = (0.99,0.01), for which two 1-length

_ _ codewords are optimal, yek < 1/3. In this case, any
If 1y < v, then, by the Kraft inequality, one ok coge withi, < 6 is optimal, having itemi. (with I; = 1)
throughi, . must exceed.. However, this contradicts g5 the jtem with maximum pointwise redundancy. Thus
the unit-sized bounds of (9). Fpi =27"~%, a uniform here is no contradiction, although this does illustrate
distribution results iy = v + 1. Thus, since these oy this lower bound on length is not as tight as it might
results hold for any, this extends to alpy < 277", 4 first appear, only applying tan optimal code rather
and this bound is tight. thanall optimal codes.

Supposep; < 1/(2¥ — 1) and consider an optimal
length distribution withl; < v. As in the Theorem 1
proof, we consider the weights of the nodes of the
corresponding extension to the code tree at léyel\’ We now briefly address th&" exponential redundancy
is the set of nodes on that level, whil#’ is a set of problem. Recall that this is the minimization of (4),
nodes not in the tree, where each leatbove the level 1 1
has25~% nodes inA’, each of weighp;2:~%. Again, R‘(p,1) = p Ig ) " pitid = Sle > pi2dtitier),

IV. d™ EXPONENTIAL REDUNDANCY

the sum of the2 — 1 weights in A’ UN\{j} is no less ieX eX
than1 — p;, so there is one node€ such that A straightforward application of Lyapunov’s inequality
. 1—p; 1—pj for moments — an application of Holder’s inequality,
wk') 2 55— 2 oo (11) e.q., [37, p. 27] or [38, p. 54] — yieldR? (p,1) <
R%(p,1) for d’ < d. Taking limits to0 andoo, this results

If this is in V, taking the logarithm and addirig to the

right-hand side, n ~
1= p; 0<R(p.l) < R'(p,1) <R*(p,1) <1, d>0
R*(l,p) Zv—1+lg2VT_]1 (12) 0< RYUp,l) < R(p,l) < R*(p,l) <1, de(-1,0)

the right-hand side being an upper bound to its pointwiéer any validp and anyl satisfying the Kraft inequality
redundancy (based on the right-hand side of (11)). With equality; the lower bound in the negative case is a
k' is in A/, then, using the right-hand side of (11), th&esult of

corresponding leaf (codeword) at levell;, < [; has at 1 _ o , 0

least probability R (pl) = lg;f =0, given ;(2 =L

oli=l . o ! ;lpjl_y = 5 1 ;lf?—il—u This results in an extension of (9):
and (12) thus still holds. 0< Rzpt(p) < REi(p) < Ri(p) <1, d>0
Consider adding a bit to codewoyd Note that 0 < RGpe(P) < Ropt(P) < Ropi(p) <1, d € (—1,0)
Li+1+1gp; < v+lgp; WhereRffpt (p) is the optimald" exponential redundancy,

- an improvement on the bounds found in [18]. These
= v-1l+lg ov—1 _ 1 inequalities lead directly to:
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NN \ Note thata < 0.5 is a trivial case, always solved by
NEFEERN P J/ a finite unary code,

c(n) £ (0,10,110,...,1"720,1™7 1.

This can be seen by applying the exponential combina-
B0 ' J tion rule (7) of the associated Huffman-like algorithm;
at each step, the combined weight will be the lowest
v weight of the reduced problem, being strictly less than
the higher of the two combined weights, thus leading to
o3r : a unary code.
o2} Fora > 0.5, there is a relationship between this prob-
lem and Rényi entropy. Rényi entropy [39] is defined
as

0 1 - b T L 1 1 1 1 ]
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p1Orp;

1 S
Hq(p) £ T a g (15)
i=1

Fig. 2. Bounds on/" exponential redundancy, valid for ady> 0.

Upper bounds dashed, lower bounds dotted. for a > 0, a # 1. It is often defined forx € {0,1,00}

via limits, that is,
Bounds, d Exponential Redundancy: Ho(p) = 211101 Ha(p) =lg|p|
Corollary 1: The upper bounds of Theorem 1 ar
upper bounds foR? , (p) with any d, while for d < 0,
any upper bounds for average redundancy (Huffman)
coding will also suffice (e.g., [3], [8] for knowm, or
[9], [10] for any knownp;). If d > 0, the tight lower
bounds of average redundancy coding are lower bour{tie Shannon entropy gf), and

for Rgpt(p) with d > 0. These lower bounds — whether

?the logarithm of the cardinality gp),

a—1

Hi(p) £ lim Hy(p) = —Zpi Ig pi
i=1

or not we know thatj = 1 — are

Ropt(p) > € — (1 —p;)1g(2* — 1) — H(p;)  [6], [10]

(13)

Hy(p) & i#?o H,(p) = —lgm

(the min-entropy).
Campbell first proposed exponential utility functions

for coding in [26], [27]. He observed the simple lower
bound fora > 0.5 in [27]; the simple upper bound was
subsequently shown, e.g., in [19, p. 156] and [21]. These
bounds are similar to the minimum average redundancy
bounds. In this case, however, the bounds involve Rényi's
entropy, not Shannon'’s.

Defining

where

1 - 2%
1—2v"
for p; € (0,1) and

H(z) 2 —xlgr — (1 —z)lg(1 — 2). (14)

1 1

L —
afa) = lg2a 1+l1ga

This result is illustrated fod > 0 in Fig. 2, showing an
improvement on the original unit bounds for values of

p; other than (negative integer) powers of two. and

t A .
LP(p) = min Lo(p,1)
V. BOUNDS ONEXPONENTIAL-AVERAGE PROBLEMS

A. Previously known exponential-average bounds
While the average, maximum, an#l' average redun- 0 < LPY(p) — Hyoy(p) < 1. (16)

dancy problems yield performance bounds in terms pf i next subsection we show how this bound follows
p1 (or anyp;) alone, here we seek to find any boundﬁOrn a result introduced there.

on Lu(p,1) in terms ofp; and an appropriate entropy As an example of these bounds, consider the proba-

measure. Such a more general form is needed becaygg, qistrinution implied by Benford's law [40], [41]:
unlike the other objectives discussed here, this is not a

redundancy objective.

the unit-sized bounds fat > 0.5, a # 1 are

pi =logyo(i +1) —logyo(i), i=1,2,...9
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that is, exponential redundancy. Thus improving bounds for the
redundancy problem improves them for the exponential-
average problem, and we can show similarly strict im-
At a = 0.6, for example, H,)(p) = 2.259..., SO provements to the unit-sized bounds (16); becaysmzn
the optimal code cost is betwe@®R59 and 3.260. In be expressed as a function pf, a, and Hs(p), so can
the application given in [29] with (8), these bound#is bound:
correspond to an optimal solution with probability of Bounds, Exponential-Average Objective:
success (codeword transmission) betweéeh’9 and  Corollary 2: Denote the known lower bound for op-
0.316. Running the algorithm, the optimal lengths arémal average redundancy (Huffman) codingcs;) >
I = (1,2,3,4,5,6,7,8,8), resulting in cost2.382... 0 — which is that of Corollary 1 [6], [10] — and
(probability of succes8.296...). At a = 2, H,(,(p) = the Theorem 1 upper redundancy bound for minimized
3.026..., so the optimal code cost is bounded bgnaximum pointwise redundancy coding @$(p;) < 1.
3.026 and 4.027, while the algorithm yields an opti- Further, denote the known upper redundancy bound for
mal code withl = (2,3,3,3,3,4,4,4,4), resulting in optimal average redundancy given asw(p;) < 1 [8]
cost3.099.. .. and that giverp; as@’(p;) < 1 [10]. Then, fora > 1,
The optimal cost in both cases is quite close twe have

p ~ (0.30,0.17,0.12, 0.10, 0.08, 0.07, 0.06, 0.05, 0.05).

entropy, indicating that better upper bounds might be ~ , _ . .. .

possible. In looking for better bounds, recall first that © <pj 2~V Q(p)) < Lg(p) — Ha(p)
the inequalities in (16) — like the use of the exponential < W (paz(d—l)Ha(p)>
Huffman algorithm — apply for bottu € (0.5,1) and - J

a > 1. Improved bounds on the optimal solution for th%imilarly, for a € (0.5,1), we have

a > 1 case are given in [21], but not in closed form or in

terms of a single probability and entropy. Closed-form o < L% (p) — Hs(p) < @ <p§2(@—1)Ha(P))
bounds for a related objective are given in [33]. However,

the proof for the latter set of bounds is incorrect iand

that it uses the assumption that we will always have an opt (o (G—1)Ha (p)
exponential-average-optiméal equal to1l if p; > 0.4. 0< Ly (p) — Ha(p) < (pj2 : ) :
We shortly disprove this assumption fer> 1, showing

the need for modified entropy bounds. Before this, we Proof: This is a direct result of Corollary 1 and

derive bounds based on the results of the prior SeCtiOQquation (18) m
_ Recall the example of Benford's distribution in
B. Better exponential-average bounds (17) for @ = 2. In this case, adding knowledge of

Any exponential-average minimization can be trangs improves the bounds fronB.026...,4.026...) to
formed into aR¢ minimization problem, so we can apply{3.039...,3.910...] using thew* from Theorem 1 and

Corollary 1: Given an exponential-average minimizatiom from [6] given as (13) here. Forn = 0.6, the
problem with p and a, if we define@ 2 «(a) = bounds on cost are reduced frg@259...,3.259...)
1/(1 +1ga) and to [2.259...,2.783...] usingw given as (10) in [3]:
PYPR N | Ropt(B) < 2~ H(p1) —
! Sr_ py 20-®Ha(p)
B with argument
we have
5, — pao(@—1)Hs(p) _
1 n p1 = p§2 =0.8386....
ReYpl) = —lgy p; e
lga ==  Recall from (14) that
= log, Zpialf‘ — log, (pr‘) H(z)=—zlgx — (1 —z)lg(1 — x).
i=1 i=1
= L,(1,p) — Ha(p) Although the bounds derived from Huffman coding

(18) are close fora ~ 1 (the most common case), these
where H,(p) is Rényi entropy, as in (15). This transare likely not tight bounds; we introduce another bound
formation — shown previously in [21] — provides aor a < 1 after deriving a certain condition in the next
reduction of exponential-average minimization &' section.
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1.0 —

0.8 F

P1

1
0,4: 3
I / IS4 > 1, 85U St s
s w(S3) = w(S3 U Sy) =

02t | aw(Sy) + aw(sy) aw(S3) + aw(SY)
) SO R

Fig. 3. Minimum p; sufficient for the existence of an optimal ) ] )
not exceedingl. Fig. 4. Tree in last steps of the exponential Huffman alonit

C. Exponential-average shortest codeword length  finjte unary code (with; = 1) is optimal for alla < 0.5.

Techniques for finding Huffman coding bounds do ndthis leaves the two nontrivial cases.
always translate readily to exponential generalizations1) ¢ € (0.5,1]: The proof in this case is a gener-
because Rényi entropy’s very definition [39] involves alization of [4] and is only slightly more complex to
relaxation of a property used in finding bounds such @sove. Consider the coding step at which itdngets

Gallager’s entropy bounds [3], namely combined with other items; we wish to prove that this is
the last step. At the beginning of this step the (possibly
Hftpy, (1 = 8)p1,p2,-.. pa] = merged) items left to combine afg }, S, 5%, ..., Sk,
Hilp1,p2,....pn]l + p1H1(t, 1 — 1) where we useS¥ to denote both a (possibly merged)

item of Weightw(Sj‘?) and the set of (individual) items

hold for Rényi entropy. The penalty functidh, differs combined in |terr:€S§‘?. Since {1} is .combmed n th,'s
from the usual measure of expectation in an analogdtf§P: @ll but one5y has at least weigh, (reflected in
fashion, and we cannot know the weight of a givewe iecond inequality below). Note too that all weights
subtree in the optimal code (merged item in the codidgl;) must be less than or equal to the sums of
procedure) simply by knowing the sum probability Oprobabllltlesziesf p; (reflected in the third inequality
the items included. However, we can improve upon tf€low); equality only occurs for whef} has a single
Corollary 2 bounds for the exponential problem wheitem, due to multiplication by: < 1 upon each merge
we know thatl; = 1; the question then becomes wheftep. Then

we can know this given only andpy:

for Shannon entropy; and¢ € [0,1]. This fails to

Length [, = 1, Exponential-Average Objective: 2';(’1—31) < (k—1)p
Theoren; 3:There eX|stl$ a code minimizing < m +Zk:2 w(S]’?)
Lo(p,l) = log,> icxpia with Iy = 1 for a
. < p1+ Zj:2 > icsk Di
and p if either « < 0.5 or botha € (0.5,1] and n i
p1 > 2a/(2a + 3). Conversely, giveru € (0.5,1] and = i1 Pi =1

p1 < 2a/(2a + 3), there exists @ such that any code '
with [; = 1 is suboptimal. Likewise, givem > 1 and Wwhich, sincea > 0.5, means that < 5. Thus we can

p1 < 1, there exists @ such that any code with = 1 ignore all merging steps prior to having four items and
is suboptimal. begin with this step; if we start out with fewer than four
Proof: Recall that the exponential Huffman algoitems ¢ < 3), we are guaranteed an optimal code with
rithm combines the items with the smallest weights, 1 = 1. Four items remain, one of which is ited} and
andw”, yielding a new item of weights = aw’ + aw”, the others of which aré3, 53, and Si. We show that,
and this process is repeated on the new set of weightsy1 > 2a/(2a+3), these items are combined as shown
the tree thus being constructed up from the leaves to theF19. 4.
root. This process makes it clear that, as mentioned, thaVe assume without loss of generality that weights
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w(S3), w(S3), andw(S}) are in descending order. Fromlength could be decreased by one without violating the
Kraft inequality, resulting in a better code. Either way,

w(s§)+w(5§)+w(sjf) < Zpi t_he code would no Ionger be qptimal. Thus we can
find two such smallest items with largest codewords
3 (by breaking any ties properly), which, without loss
—— . : .
- 2a+3 of generality, can be considered siblings. Therefore the
w(Sy) > w(5§), problem can be reduced to one of size— 1 via the
andw(SY) > w(SY exponential Huffman algorithm. But since all problems

of sizen’ — 1 can be solved via the algorithm, this is a
it follows that w(S3) + w(S}) < 2/(2a + 3). Consider contradiction, and the Huffman algorithm can thus find
setSj. If its cardinality is1, then any optimal code.

4 4 4 Note that this is not true for minimizing maximum
P12 w(Sy) 2 w(Ss) 2 w(Si) (19) pointwise redundancy, as the exchange argument no

so the next step merges the least two weighted iteladiger holds. This is why the sufficient condition of
S3 and Si. Since the merged item has weight at moSection Ill was not verified using Huffman-like methods.
2a/(2a + 3), this item can then be combined wit, Now we can show that there is always a code with
then {1}, so thatl; = 1. If SJ is a merged item, let usj; > 1 for any p; € (0.2,1); p1 < 0.2 follows easily.
call the two items (sets) that merged to formSit and Let

5%, indicated by the dashed nodes in Fig. 4. Because o {log ( 4p1 )J
these were combined prior to this step, “\1-m
w(Sh) +w(SY) < w(SH) +w(SH and suppose = 1+ 22 andp; = (1 — p1)/(n — 1)
for all i € {2,3,...,n}. Although item1 need not be
so 2 merged before the penultimate step, at this step its weight

w(S5) < aw(S3) + aw(S}) <

is strictly less than either of the two other remaining
weights, which have values’ = a'*™(1 — p1)/2. This
distribution has an optimal code only with > 2. (This
thust be an equality unless is equal to the logarithm
from which it is derived, in which cask can be either

~2a+3

Thus (19) still applies, and, as in the other cdses 1.
This can be shown to be tight by noting that, for an

€€ (0,(2a —1)/(8a + 12)),

A 2 1 1 1 i
pl© & <ﬁ — 36, 5g + €, 5y € 5y 6) 2 or 3.)_ Thus, knqumg merely the values af> 1 and
_ o _ p1 < 1 is not sufficient to ensure that = 1. u
achieves optimality only with length vectof =  These relations are illustrated in Fig. 3, a plot of the
(2,2,2,2). The result extends to smallgy. minimum value ofp, sufficient for the existence of an

2) a > 1: Givena > 1 andp; < 1, we wish to optimal codel®®* with I5P* not exceeding.

show that a prObablIlty distribution alwayS exists such S|m||ar|y to minimum maximum p0|ntW|Se redun-
that there is no optimal code with = 1. We first show dancy, we can observe that, fer> 1 (that is,a > 1 and
that, for the exponential penalties as for the traditionghditional Huffman coding), a necessary condition for
Huffman penalty, every optimal can be obtained via j** — 1 isp, > 1/3. The sum of the last three combined
the (modified) Huffman procedure. That is, if mU'“P'Q/velghts is at least, andp; must be no less than the other
length vectors are optimal, each optimal length vectgfo. However, fora < 1, there is no such necessary
can be obtained by the Huffman procedure as long @gndition for p;. Givena € (0.5,1) andp; € (0,1),
ties are broken in a certain manner. consider the probability distribution consisting of one

Clearly the optimal code is obtained far= 2. Let jtem with probabilityp; andn = 1 + 29 items with
n' be the smallest for which there is anl that is equal probability, where

optimal but cannot be obtained via the algorithm. Since 5 1—9

L is optimal, consider the two smallest probabilitips; g = max ng“ an J 7 {1g le ,o>

andp, _1. In this optimal code, two items having these 1- gl

probabilities (although not necessarily item's— 1 and and, by convention, we define the logarithm of negative
n’) must have the longest codewords and must have tinembers to be-oco. Settingp; = (1 — p1)/(n — 1) for
same codeword lengths. Were the latter not the case, #flei € {2,3,...,n} results in a monotonic probability
codeword of the more probable item could be exchangetss function in whiclil —p;)a?/2 < p;, which means
with one of a less probable item, resulting in a bettéinat the generalized Huffman algorithm will have in its
code. Were the former not the case, the longest codewperhultimate step three items: One of weightand two
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of weight (1 — p1)a?/2; these two will be complete or, equivalently, sinc@'~% = a2,

subtrees with each leaf at depthSince(1—p;)a¥/2 <
p1, ISP = 1. Again, this holds for any, € (0.5,1) and

p1 € (0,1), so no nontrivial necessary condition exists

for l‘fpt = 1. It is also the case fou < 0.5, since the Applying (16) to subtree3, we have

unary code is optimal for any probability mass function.

D. Exponential-average bounds fare (0.5,1), p; >
2a/(2a + 3)

n
GHatp?) > 1 S pial > af= @,
=2

(1—-p1)a P

The bounds for}_, p;a’ are obtained by substituting

Entropy bounds derived from Theorem 3, althougf20), multiplying both sides by1 — p1)a, and adding

rather complicated, are, in a certain sense, tight:
Further Bounds, Exponential-Average Objective:
Corollary 3: In the minimization of L,(p,l1) =
log, > ;e piat, if a € (0.5,1) and a minimizing!
hasl; = 1 (i.e., all p; > 2a/(2a + 3)), the following
inequalities hold, wheré = a(a) £ 1/(1 + lga):

" <
S piat > o [adHa(p) _pﬂ " bap
i=1

+p1>

’ + ap1

or, equivalently,

Q=

L.(p) <1+ log, (a {ade(p) — pﬂ

and

2=

n
> piadi <a [a&Hd(”) —pﬂ
i=1

or, equivalently,

Lo(p) > 1+ log, <[a&Hd(”) —pﬂ : +p1> :

This upper bound is tight fop; > 0.5 in the sense that,
given values fora and p;, we can findp to make the

inequality arbitrarily close. Probability distributiop =
(p1,1 — p1 + €, ¢) does this for smalk, while the lower

bound is tight (in the same sense) over its full range,

sincep = (p1, (1 —p1)/4, (1 —p1)/4,(1 —p1)/4, (1 -

p1)/4) achieves it (with a zero-redundancy subtree of

the weights excluding-).
Proof:

We apply the simple unit-sized coding

the contribution of item{1}, ap;. [

A Benford distribution (17) fora = 0.6 yields
Hyq)(p) =~ 2.260. Sincep; > 2a/(2a + 3), I is 1
and the probability of success is betweer50 and
0.298; that is, Lo** € [2.372...,2.707...). Recall
that the bounds found using (18) weBgsuccess €
(0.241,0.316) and L** € [2.259...,2.783...], an
improvement on the unit-sized bounds, but not as
good as those of Corollary 3. The optimal colle=
(1,2,3,4,5,6,7,8,8) yields a probability of success of
0.296 (LP" = 2.382...).

Note that these arguments fail far> 1 due to the
lack of sufficient conditions fot; = 1. Fora < 1, other
cases likely have improved bounds that could be found
by boundingl; — as with the use of lengths in [42] to
come up with general bounds [7], [8] — but new bounds
would each cover a more limited rangepfand be more
complicated to state and to prove.
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