Twenty (or so) Questionsh-ary Length-Bounded
Prefix Coding

Michael B. BaerMember, IEEE

Abstract— The Huffman algorithm efficiently finds an optimal Consider a short example of such a series of questions, with
prefix code given a probability mass function. However, some only “yes,” “no,” and “sometimes” as possible answers. The

appl_lcatlons call fo_r restrictions on feasible codes. Len_gth-llmlted object to guess is one of the seven Newtonian colors [4], whic
prefix coding restricts the set of codes to those for which none of .
we choose to enumerate as follows:

the n codewords is longer than a given lengthlm.x. This paper
generalizes two algorithms used for length-limited prefix coding, 1) Green (G)
without increasing complexity, in order to introduce a minimum 2) Yellow (Y)
codeword length constraint [,in and to be applicable to both
binary and nonbinary codes. Previously, nonbinary cases needed 3) Red (R)

a slower dynamic programming approach, and — although useful ~ 4) Orange (O)

in limiting memory usage of multiple codes — the minimum 5) Indigo (1)

length constraint was not optimized for. These extensions have g) \Violet (V)

various applications including fast decompression, context-based) Blue (B)

coding, and a modified version of the game “Twenty Questions.”)

This paper also uses them to solve the problem of finding an A first question we ask might be, “Is the color seen as a warm

optimal code with limited fringe, that is, finding the best code g|or?” If the answer is “sometimes,” the color is green.tIf i
among codes with a maximum difference between the longest and .

shortest codewords. The previously proposed method for solving Is "yes," itis on'e of colo& thI’O’l’J?hél. If S_O’ W? 'then. ask, “Is
this problem was nonpolynomial time. the color considered primary?” “Sometimes” implies yellow

“yes” implies red, and “no” implies orange. If the color istno
warm, it is one of colorss through7, and we ask whether
|. INTRODUCTION the color is considered purple, a different question than th
one for color2 through4. “Sometimes” implies indigo, “yes”
The parlor game best known as “Twenty Questions” hasj@plies violet, and “no” implies blue. Thus we can distingui

long history and a broad appeal. It was used to advance {{g@ seven colors with an average df p; questions ifp; is
pIOt of Charles DickensA Christmas CarO[l], in which it is the probabmty that color in question is green.

called "Yes and No,” and it was used to explain information thjs series of questions is expressible using code tree
theory in Alfréd Renyi's A Diary on Information Theor2], in- hotation, e.g., [5], in which a tree is formed with each child
which it is called “Bar-kochba.” The two-person game begingyit from its parent according to the corresponding output
with an answerer thinking up an object and then being askednpol, j.e., the answer of the corresponding question. A
a series of questions about the object by a questioner. Thegge tree corresponding to the above series of questions is
quest!ons must be answered either yes” or “no. Usua[ly “E?Jown in Fig. 1, where a left branch means “sometimes,” a
questlo_ner can ask at most twenty quest|_ons, and the WiBnefdiqdle branch means “yes,” and a right branch means “no.”
determined by whether or not the questioner can sufficientiy,e number of answers possible is referred to by the constant
surmise the object from these questions. D and the tree is a-ary tree. In this case)) = 3 and the

Many variants of the game exist — both in name angyge tree is ternary. The number of outputs= 7, is the
in rules. A recent popular variant replaces the questiongfmber of colors.

with an electronic device [3]. The answerer can answer tt‘eThe analogous problem in prefix coding is as follows: A

dewce’; questions with one of four answers ;. 'Yes,” "N0.gq rce (the answerer) emits input symbols (objects) drawn
“sometimes,” and “unknown.” The game also differs from thﬁom the alphabett’ = {1,2 n}, wheren is an integer
={1,2,...,n},)

traditional game in that the device often needs to ask MAgG11; has probabilityp;, thus defining probability vector

than twenty questions. If the device needs to ask more thﬁm_ (p1, P2 pn). Only possible symbols are considered
-) [N ot

the customary twenty questions, the answerer can view $1is¢g; .o ing and these are sorted in decreasing order of pilebab
a partial victory, since the device has not answered cdryrec&y. thusp, > 0 andp; < p; for everyi > j such that, j € X
) i i > Dj 4 5. .

given the initial twenty. However, the device evgntuallyegi. Since sorting is onlyO(nlogn) time andO(n) space, this
up after25 questions if it cannot guess the questioner’s obje an be assumed without loss of generality.) Each input symbo
is encoded into a codeword composed of output symbols of the
D-ary alphabef0,1,...,D — 1}. (In the example of colors,
"“yes,” and2 “no.”) The codeword

This material was presented in part at the IEEE Internati@yahposium
on Information Theory, Nice, France, June 2007 ;
The author is with Ocarina Networks, Inc., 42 Airport Parkw@an Jose, 0 represents “sometimes]

CA 95110-1009 USA (e-mail: calbeat@ee.org). , ___ ¢; corresponding to input symbelhas lengthi;, thus defining
This work has been submitted to the IEEE for possible pulitinat | h 1 — (1,1 I In Fia. 1. f |
Copyright may be transferred without notice, after whicts thersion may €Ngth vectorl = (l1,12,...,1n). In Fig. 1, for examplec;

no longer be accessible. is 223 — the codeword corresponding to blue — so length

l; = 2. The overall code should be a prefix code, that i®f the answerer and ambiguity of the questioner mean that
no codeworde; should begin with the entirety of anothera decision tree model is not, strictly speaking, correct. Fo
codewordc;. In the game, equivalently, we should know wheexample, the aforementioned answers to questions about the
to end the questioning, this being the point at which we knoseven colors are debatable. The other applicationgrnajth-
the answer. boundedprefix coding mentioned previously, however, do fall

For the variant introduced here, all codewords must hawéthin this model.
lengths lying in a given intervallf,in,lmax]. IN the example If we either do not require a minimum or do not require a
of the device mentioned abovg,;, = 20 and /., = 25. A maximum, it is easy to find values f;,, or [,,., which do not
more practical variant is the problem of designing a datacodlimit the problem. As mentioned, settirig;, = 0 results in a
that is efficient in terms of not only compression ratio, daba trivial minimum, as does,;, = 1. Similarly, settingl,,.x = n
memory use and coding speed. Moffat and Turpin proposedusing the hard upper boutd, = [(n—1)/(D—1)] results
a variety of efficient implementations of prefix encoding anih a trivial maximum value. In the case of trivial maximum
decoding in [6], each involving table lookups rather thadeco values, one can actually minimize expected codeword length
trees. They noted that the length of the longest codewardlinear time given sorted inputs. This is possible becaase
should be limited for computational efficiency’s sake. Comp each stage in the standard Huffman coding algorithm, the set
tational efficiency is also improved by restricting the @ler of Huffman trees is an optimdbrest (set of trees) [9]. We
range of codeword lengths, reducing the size of the codidgscribe the linear-time algorithm in Section VII.
tables and the expected time of searches required for degodi If both minimum and maximum values are trivial, Huffman
Reducing table size is also important for applications wittoding [10] yields a prefix code minimizing expected code-
limited memory in which many different Huffman codes arevord length
required, due to the use of multiple contexts. Thus, one tigh n
wish to have a minimum codeword size of, shy,, = 16 bits Zpil'?' @)
and a maximum codeword size f,. = 32 bits (D = 2). =1
If expected codeword length for an optimal code found undé&he conditions necessary and sufficient for the existence of
these restrictions is too lond,,;» can be reduced and thea prefix code with length vectdr are the integer constraint,
algorithm rerun until the proper trade-off is found betweeh € Z,, and the Kraft (McMillan) inequality [11],
compression ratio and complexity (in terms of speed and n
memory). k(1) & ZD*” <1. (2)

A similar problem is one of determining opcodes of a i—1

micropracessor designed to use variable-length opcodes, eFinding values foi is sufficient to find a corresponding code,

a certain ”W?ber Of. bytesX = 256) W'th a lower limit and . as a code tree with the optimal length vector can be built from
an upper limit to size, e.g., a restriction to opcodes be'%%rted codeword lengths i@(n) time and space

claly alls within the context coneidered here, a5 doas [S ot aways obvious that we shouid minimize the
problem of assigning video recorder scheduling; codes;ethegsingig :Srr:k?eerr (;f ?Jléz?(l)?]?% P él;c?sré igtlrléallf.eg?y’ the
human-readable decimal code® (= 10) have lower and P q Hl,
upper bounds on their size, suchlas, = 3 and .« = 8, n
respectively. Zpi(li = lmin) 3)
Other problems of interest havig,,, = 0 and are thus =1
length limited but have no practical lower bound on lengtivhere z* is = if = is positive,0 otherwise). Consider the
[7, p. 396]. Yet other problems have not fixed bounds butexample of video recorder scheduling codes. In such an
constraint on the difference between minimum and maximuapplication, one might instead want to minimize mean square
codeword length, a quantity referred to as fringe [8, p. 121distance fromi,,in,
As previously noted, large fringe has a detrimental effect o n
the speed and memory usage of a decoder. In Section IX of Zpi(li — Ioin) %
this paper we discuss how to find such codes. i1
Note that a problem of size is trivial for certain values
Of lin and lypax. If lmin > logpn, then all codewords can
havel,,;, output symbols, which, by any reasonable objective, ~
forms an optimal code. ... < logpn, then we cannot me(li — bnin) (4)
code all input symbols and the problem, as presented here, =1
has no solution. Since only other values are interesting, wader the above constraints for amenalty functiony(-)
can assume that € (D'=in Dlmax]. For example, for the convex and increasing dR. . Such an additive measurement
modified form of Twenty Questiond) = 4, l.,;, = 20, and of cost s called auasiarithmetic penaltyin this case a convex
lmax = 25, so we are only interested in problems wherguasiarithmetic penalty.
n € (2%9,259], Since most instances of Twenty Questions One such function family isp(6) = (6 + lmin)? + b5, @
have fewer possible outcomes, this is usually not an infieges quadratic objective useful in optimizing a communicatidies
problem after all, as instructive as it is. In fact, the faillly lay problem [12]. Another function familyp(§) = D! +tmin)

We generalize and investigate how to minimize the value

ne Hmax =

A ppax—1 = 2

105 | [115]]125][205] [215][225] & Flmax—2 =0

2)Y 3R 4)0 5)1 6) Vv 7B

Fig. 1. A monotonic code tree far = 7 and D = 3 with I = (1,2,2,2,2,2,2): Each leaf contains the trinary output code, the corresipgndbject
number, and the initial for the corresponding color as in i8adt The «;’s are as defined in Section VIII.

for t > 0, can be used to minimize the probability of buffesection, we present a brief review of the relevant liteetur
overflow in a queueing system [13]. In Section lll, we extend taD-ary codes an alternative to
Other cost functions that might be of interest concern datade tree notation first presented in [12]. This notatiors aid
expansion [14]. Data expansion occurs where statistics @mesolving the problem in question by reformulating it as an
perfectly known and uncompressed input data are repladadtance of theD-ary Coin Collector’'s problem, presented in
by the compressed data. Uncompressed data také&ypg n] Section IV as an extension of the (binary) Coin Collector’s
D-ary symbols per input symbol. This is replaced by dataroblem [15]. An extension of the Package-Merge algorithm
taking up I(i) D-ary symbols for input itemi. Thus, if solves this problem; we introduce the reduction and resyilti
all occurrences wheré(i) exceeds[log,n] are prior to algorithm in Section V. We make @(n) space in Section VI
the remaining data, the file temporarily expands by up #nd refine it in Section VII. The alternative approach for the
S p(@)(1(i)—[logp n])™ output symbols per input symbol, expected length problem of minimizing (1) — i.(d) = ¢
or ©(8) = (0 4 lmin — [logpn])™. This is minimized by a — is often faster; this approach is sketched in Section VIIl.
simple fixed-length code. It is not a quantity one would ulsual Algorithmic modifications, applications, possible extiens of
want to minimize alone, but an application might trade of§ th this work are discussed in Section IX.
measure with the more traditional measure of expectediengt
using T

p(8) =3+ NG -7 - . . :
.) . Reviewing how the problem in question differs from binary
wherey = [logp 1] — lmin @and is a positive constant. Suchpy,ffman coding:

a formulation linearly trades off the two quantities; Huém
coding corresponds té = 0 and fixed-length coding ta —
oo. Solving for this family of objectives, we can minimize one
guantity with respect to a constraint on the other or minemiz
a variety of nonlinear hybrid coding objectives using conve
hull techniques like those employed in [12].

Mathematically stating the length-bounded problem,

. PRIOR WORK

1) It can be nonbinary, a case considered by Huffman in
his original paper [10];

2) There is a maximum codeword length, a restriction
previously considered, e.g., [16] i®(n3lyax log D)
time [17] andO(n?log D) space, but solved efficiently
only for binary coding, e.g., [15] i@ (nly.x) time O(n)
space and most efficiently in [18];

Given p=(P1,---,Pn), Pi >0; 3) There is a minimum codeword length, a novel restric-
De{2,3,...}; tion;
convex, monotonically increasing 4) The penalty can be nonlinear, a modification previously
p:Ry = Ry considered, but only for binary coding, e.g., [19].
Minimize g Zz‘pi‘Pl(li — lmin) There are several methods for finding optimal codes for
subjectto >, D~ <15 various constraints and various types of optimality; weeev
li € {mins bnin + 1, -+ bnax }- the three most common families of methods here. Note that
Note that we need not assume that probabilitiesum to1; other methods fall outside of these families, such as atinea
they could instead be arbitrary positive weights. time method for finding minimum expected length codewords

Thus, in this paper, given a finite-symbol input alphabet for a uniform distribution with a given fringe [20]. (Thisféérs
with an associated probability vectgr, a D-symbol output from the limited-fringe problem of Section IX, in which the
alphabet with codewords of length&,in, Imax] allowed, and distribution need not be uniform and fringe is upper-bowhde
a constant-time-calculable convex penalty functipn we not fixed.)
describe arO(n(lmax — Imin))-time O(n)-space algorithm for ~ The first and computationally simplest of these are
constructing ap-optimal code, and sketch an even less contuffman-like methods, originating with Huffman in 1952 [10
plex reduction for the most convex penalty functigr(y) = and discussed in, e.g., [21]. Such algorithms are generally
d, minimization of expected codeword length. In the nefinear time given sorted weights and th@gn logn) time in

general. These are useful for a variety of problems invglvirone first presented in [12] and modified in [19]. Nodeset
penalties in linear, exponential, or minimax form, but nabotation, an alternative to code tree notation, has preljou
for other nonlinearities nor for length-limited coding. ko been used for binary alphabets, but not for gendpahry
complex variants of this algorithm are used to find optimallphabet coding, thus the need for generalization.
alphabetic codes, that is, codes with codewords consttaine The key ideaEach node(i,) represents both the share of
to be in a given lexicographical order. These variants are tifle penalty (4) Weigh) and the (scaled) share of the Kraft
the Hu-Tucker family of algorithms [9], [22], [23], whichta sum (2) (vidth) assumed for théth bit of theith codeword.
O(nlogn) time andO(n) space [24], are the most efficientBy showing that total weight is an increasing function of the
algorithms known for solving such problems (although sonsenalty and that there is a one-to-one correspondence &etwe
instances can be solved in linear time [25], [26]). an optimal code and a corresponding optimal nodeset, we
The second type of method, dynamic programming, is als@duce the problem to an efficiently solvable problem, thCo
conceptually simple but much more computationally congollector’s problem.
plex. Gilbert and Moore proposed a dynamic programming | order to do this, we first need to make a modification to
approach in 1959 for finding optimal alphabetic codes, anfhe problem analogous to one Huffman made in his original
unlike the Hu-Tucker algorithm, this approach is readiljonpinary solution. We must in some cases add a “dummy”
extensible to search trees [27]. Such an approach can al§Qut or “dummy” inputs of infinitesimal probability; = ¢ >
solve the nonalphabetic problem as a special case, e.4., [¥6to the probability vector to assure that the optimal code
[28], [29], since any probability vector satisfying < p; for s the Kraft inequality satisfied with equality, an asstiompt
everyi > j has an optimal alphabetic code that optimizégnderlying both the Huffman algorithm and ours. The positiv
the nonalphabetic case. A different dynamic programmingopapilities of these dummy inputs mean that codes olfaine

approach can be used to find optimal “1"-ended codes [38}yd pe slightly suboptimal, but we later specify an altjori
and optimal codes with unequal letters costs [31]. Itai [1§}nerec = 0, obviating this concern.

used dynamic programming to optimize a large variety of
coding and search tree problems, including nonbinary keng
limited coding, which is done witl® (12, log D) time and
O(n?log D) space by a reduction to the alphabetic case. We
reduce complexity significantly in this paper.

The third family is that of Package-Merge-based algorithms .) o
and this is the type of approach we use for the generaliz_@ﬁ all integersz (not just nonnegative m_tegers). Such dummy
algorithm considered here. Introduced in 1990 by Larmote aff!Puts allow us to assume that the optimal tree (for real plus
Hirschberg [15], this approach is most often used for binafmmy items) is an optimal full tree (i.e., thatl) = 1,
length-limited linear-penalty Huffman coding, althougthas Wherer is as defined in (2)). For sufficiently smal| the
been extended for application to binary alphabetic codap [F°de will be identical to that for = 0, and, as in traditional
and to binary convex quasiarithmetic penalty functiong].[19uffman coding, nondummy codewords are identical to the
The algorithms in this approach generally h&¥eil .)-time c_odewords of an optimal code for the (_)nglnal input distribu
O(n)-space complexity, although space complexity can vafiPn- We can thus assume for our algorithm thak) = 1 and
by application and implementation, and the alphabeticavari " mod (D —1) = 1.
and some nonquasiarithmetic (and thus nonlinear) variants/Vith this we now presentodesetotation:
have slightly higher time complexityX(nimax logn)). Definition 1: A nodeis an ordered pair of integerg,!)

To use this approach for nonbinary coding with a lowesuch thati € {1,...,n} andl € {lmin + 1,...,lmax}. Call
bound on codeword length, we need to alter the approathe set of all possible nodds This set can be arranged in an
generalizing to the problem of interest. The minimum sizex (Imax—!min) 9rid, €.g., Fig. 2. The set of nodes, mwdeset
constraint on codeword length requires a relatively simpt®rresponding to input symbal (assigned codeword; with
change of solution range. The nonbinary coding generaizat length /;) is the set of the first; — I,,;, nodes of column,
is a bit more involved; it requires first modifying the Packag that is, m (i) = {(j,1) | j =i, | € {lmin + 1,...,l;}}. The
Merge algorithm to allow for an arbitrary numerical base@odeset corresponding to length vectois n(1) = (J, mi(i);
(binary, ternary, etc.), then modifying the coding problean this corresponds to a set af codewords, a code. Thus, in
allow for a provable reduction to the modified Package-Merddg. 2, the dashed line surrounds a nodeset corresponding to
algorithm. At times “dummy” inputs are added in order td = (1,2,2,2,2,2,2). We say a nodé¢i,) haswidth p(i,l) £
assist in finding an optimal nonbinary code. In order to make ' andweight (i, 1) £ p;p(l — lmin) — Pi(l — lmin — 1),
the algorithm precise, th® (n(lmax — Imin))-time O(n)-space as shown in the example in Fig. 2. Note thatyfl) = I,
algorithm, unlike some other implementations [15], mirdes (4,() = p;.
height (that is, maximum codeword length) among optimal We must emphasize that the above “nodes” are unlike nodes

As with traditional Huffman coding [10], the number of
Hummy values needed {© — n) mod (D — 1), where

zmody =z —y|x/y]

codes (if multiple optimal codes exist). in a graph; similar structures are sometimes instead ctléed
[33], but we retain the original, more prevalent term “natles
I1l. NODESETNOTATION Given valid nodesetN C I, it is straightforward to find

Before presenting an algorithm for optimizing the abovthe corresponding length vector and, if it satisfies the Kraf
problem, we introduce a notation for codes that generalizeequality, a code.

[(level)

2

¢ (input symbol)

Fig. 2. The set of nodeg with widths {p(i,1)} and weights{s(i,1)} for ¢(6) =62, n =7, D = 3, limin = 1, Imax = 4

IV. THE D-ARY COIN COLLECTOR S PROBLEM AND THE use the following definitions:

PACKAGE-MERGEALGORITHM Remainder
We find optimal codes by first solving a related problem, the ppow = the uniquer € D*
Coin Collector’s problem. LeDZ denote the set of all integer such that®t € Z\DZ
powers of a fixed intege > 1. The Coin Collector’s problem Minimum width
of size m considers “coins” indexed by € {1,2,...,m}. p* = minger p;
Each coin has a widthp; € D%; one can think of width as (note p* € D7)
coin face value, e.gp; = 0.25 = 272 for a quarter dollar Small width set
(25 cents). Each coin also has a weight, ¢ R. The final * 2 il pi=p}
problem parameter is total width, denoteg;. The problem (note Z* + ()
is then: o “First” item
Minimize (pc(1,...m}} Liep Hi i* £ arg mingeg.
subject to 2ieB Pi = Prot “First” package
where m € Ly (5) P such that
Hi < RZ |P| = D7
Pi S D rP* é rP C I*,
Prot € Ry P<I\P, |I*|>D
We thus wish to choose coins with total width,, such that 0, |Z*| < D

their total weight is as small as possible. This problem js

. . . Where DZ denotes integer multiples @b and P < Z*\P
an input-restricted variant of the knapsack problem. chv,evdenotes that, for all € P andj € T\P, p; < p1,. Then the
il 1 (e 7"

given sorted inputs, a linear-time solution to (5) for= 2 f S . - Lo
. . . N ollowing is a recursive description of the algorithm:
was proposed in [15]. The algorithm in question is called the wing | ursiv Pl gorl

Package-Merge algorithrand we extend it here to arbitrafy.)
Recursive D-ary Package-Merge Procedure

In our notation, we use € {1,...,m} to denote both the - _
index of a coin and the coin itself, anfl to represent the BaSiS.pior = 01 CC(Z; prot) = 0.
m items along with their weights and widths. The optimal Case 1.p* = ppow and T # 0: CC(Z,pet) =

solution, a function of total width,., and itemsZ, is denoted CC(Z\{i"}, por — p*) U {2"}.

CC(Z, psot) (the optimal coin collection fof and py.;). Note ~ Case 2ap* < ppow, I # 0, and |Z*| < D: CC(Z, piot) =

that, due to ties, this need not be unique, but we assume h&t(Z\Z*, piot)-

one of the optimal solutions is chosen; at the end of Sectipn V Case 2b.p* < ppow, Z # 0, and |Z*| > D: Create’, a

we discuss how to break ties. new item with weightuy = . 5. p; and widthp, = Dp*.
Because we only consider cases in which a solution existd)is new item is thus a combined item, package formed

Ptot = WPpow fOr SOME ppow € DZ andw € Z,. Here, by combining theD least weighted items of width*. Let

assumingyor > 0, ppow andw are the unique pair of a powerS = CC(Z\P* U {i'}, piot) (the optimization of the packaged

of D and an integer that is not a multiple &f, respectively, version). Ifi’ € S, thenCC(Z, piot) = S\{3'}UP*; otherwise,

which, multiplied, formpies. If pior = 0, w and p,oy, are not CC(Z, piot) = S.

used. Note thap,., need not be an integer. Theorem 1:If an optimal solution to the Coin Collector’s

Algorithm variables problem exists, the above recursive (Package-Merge) algo-

At any point in the algorithm, given nontrividl and p..¢, we rithm will terminate with an optimal solution.

p=3 p=1 p=1 p=1 p=1 p=1 Prot =5 =123

§§ p=1pu=1
N = =
p=3 p=3 Prot =3 =103
n= =
Yu=T
f=">5
p=1p=1
p=3 prot =0 =03
n="

Fig. 3. A simple example of the Package-Merge algorithm

Proof: We show that the Package-Merge algorithrout of the optimal set. Given input sorted first by width then
produces an optimal solution via induction on the number ofeight, the resulting algorithm i©(m) time and space.
input items. The basis is trivially correct, and each inthect
case reduces the number of items by at least one. The inductiv V. A GENERAL ALGORITHM
hypothesis orpt > 0 andZ # @ is that the algorithm is

correct for any problem instance with fewer input items thatn we now formalize ,the reduction from the cpdmg proplgm
instance(Z, iy). 0 the Coin Collector’s problem. This generalizes the smil

) . reduction shown in [19] for binary codes with only a limit
If p* > ppow >0, orif T =0 and pyor # 0, then there is o mayimum length, which is in turn a generalization of [15]

no solution to the problem, contrary to our assumption. Thi§; |ength-limited binary codes with lineap, the traditional

all feasible cases are covered by those given in the proeedLHenany function.

Case 1 indicates that the solution must contain at least ONE\/e assert that any optimal solutiovi of the Coin Collec-

element (item or package) of width*. These must include (¢ problem with total width

the minimum weight item inZ*, since otherwise we could

substitute one of the items with this “first” item and achieve _n- Dlwin D~ lmin

improvement. Case 2 indicates that the solution must aontai Prot = pH 1

a number of elements of width* that is a multiple ofD. If on coinsZ (identical to the set of all possible nodéis a

this number ig), none of the items ifP* are in the solution. If nodeset for an optimal solution of the coding problem. This

it is not, then they all are. Thus, #* = {), the number i), yields a suitable method for solving the problem.

and we have Case 2a. If not, we may “package” the items,To show this reduction, we first defingN) in a natural
considering the replaced package as one item, as in Casedgnner for anyN = n(1):

Thus the inductive hypothesis holds. [] R
Fig. 3 presents a simple example of this algorithm at work p(N) = Z p(i,1)
for D = 3, finding minimum total weight items of total (i.DEN

width pyot = 5 (or, in ternary,123). In the figure, item width
represents numeric width and item area represents numeric

weight. Initially, as shown in the top row, the minimum weligh =1 I=lmin+1

item has widthp* = p;« = ppow = 1. This item is put into " D~lwin — Dk
the solution set, and the next step repeats the task on the - ZT
items remaining outside the solution set. Then, the remgini =l N

minimum width items are packaged into a merged item of - nDD—_lK(l)

width 3 (103), as in the middle row. Finally, the minimum
weight item/package with width* = p;« = poow = 3 IS Wherex(l) is the Kraft sum (2). Givem mod (D — 1) = 1,
added to complete the solution set, which is now of weight all optimal codes have the Kraft inequality satisfied with
The remaining packaged item is left out in this case; whaguality; otherwise, the longest codeword length could be
the algorithm is used for coding, several items are usuafly | shortened by one, strictly decreasing the penalty without

violating the inequality. Thus the optimal solution hg$) = 1 solution of the Coin Collector’s problem corresponds to an
and . optimal length vector. []
p(N) = n— D D—lmin_ Because the Coin Collector’'s problem is linear in time and
D-1 space — same-width inputs are presorted by weight, nunterica
Also define: operations and comparisons are constant time — the overall
algorithm finds an optimal code i®(n(lmax — lmin)) time
p(l) —¢(l=1) and space. Space complexity, however, can be decreased.
i,1).
(%G:N”() VI. A DETERMINISTIC O(n)-SPACE ALGORITHM
Note that If p = p;, we are guaranteed no particular inequality
relation betweerd; andl; since we did not specify a method
p(N) = > i) for breaking ties. Thus the length vector returned by the
GEN algorithm need not have the property that< [; whenever
n L i < j. We would like to have an algorithm that has such a
= Y > pibp(l = lnin) monotonicity property.
i=1 l=lmin+1 Definition 2: A monotonic nodeset, N, is one with the

i L following properties:
= E pl‘ﬁ(lz - lmin) - § pz‘P(O) . X .
i=1 i=1 (Z,Z) €N = (’L + 1,[) eN fori<n (6)

Since the subtracted term is a constant, if the optimal reides (i,)eN=(i,l-1)e N forl>lnm+1. (7)

correispondls to ﬁ, valid . code, slolvmg the CO'E C’O"eCth'ﬁ‘n other words, a nodeset is monotonic if and only if it corre-
problem solves this coding problem. To prove the reductiogy,, s 15 a length vectdrwith lengths sorted in increasing
we need to prove that the optimal nodeset indeed correspma?&er; this definition is equivalent to that given in [15].

to a valid cgde. We begin with the following !emma_:k Examples of monotonic nodesets include the sets of nodes
Lemma 1:Suppose thal is a nodeset_c;f width D™ +7 gnciosed by dashed lines in Fig. 2 and Fig. 4. In the latter
wherek andx are integers and <r < D™". ThenN has @ 550, — 21, D =3, [, = 2, andl,., = 8, SO prot = 2/3.

subsetk with width r. _ . L As indicated, ifp; = p; for some: and j, then an optimal
Proof. Let us use |_ndu_ct_|on on the cardinality of the se{,,jeget need not be monotonic. However, if all probabilitie

The base casgV| = 1 is trivial since thenw = 0. AsSume 50 gistint, the optimal nodeset is monotonic.

the lemma holds for allN| < n, and supposgN| = n. | emma 2:1f p has no repeated values, then any optimal

Let p” = min, . p; andj* = arg min; . yp;. We can view gqtion ' = CC(I,n — 1) is monotonic.

item j* of width p* € D7 as the smallest contributor to the Proof: The second monotonic property (7) was proved

width of N andr as the portion of thé)-ary expansion of the o optimal nodesets in Theorem 2. The first property (6) can

width of N to the right of D=*. Thenr must be an integer pe shown via a simple exchange argument. Consider optimal

multiple of p*. If » = p*, R = {j"} is a solution. Otherwise j with ; > ; so thatp; < p;, and also considef with lengths

let N = N\{j*} (so|N'| =n —1) and letR’ be the subset for inputs and j interchanged, as in [34, pp. 97-98]. Then
obtained from solving the lemma for sat of width » — p*.

T o
—~ ~6

2 —
= =
> >

ThenR =R U {J*} [} Zk pk@(l;g - Zmin) - Zk; pk‘P(lk - lmin)
We now prove the reduction: = (pj = pi) [p(li = lnin) = ¢(lj = lnin)]
Theorem 2:Any N that is a solution of the Coin Collector’s <0
problem for where the inequality is to due to the optimality bf Since
1 — Dlmin p; —pi > 0 and ¢ is monotonically increasing, > [; for
ot = p(N) = ﬁD*lmi“ all 4 > j and an optimal nodeset without repeajednust be
monotonic.]
has a corresponding length vecidf such thatN = (") Taking advantage of monotonicity in a Package-Merge
and p(N) = ming Y, pi(li — lmin) — ¢(0) >, pi- coding implementation to trade off a constant factor of time
Proof: Any optimal length vector nodeset ha&)(l)) = for drastically reduced space complexity is done in [12] for

Prot- SUPPOSEN is a solution to the Coin Collector’'s problemlength-limited binary codes. We extend this to the length-
but is not a valid nodeset of a length vector. Then there €xidftounded problem, first fop without repeated values, then
an (i,1) with I € [lmin + 2, lmax] such that(i,l) € N and for arbitrary p.

(4,1 = 1) € I\N. Let R = N U{(i,1 — 1)}\{(4,1)}. Then Note that the total width of items that are each less than
p(R") = prot + (D — 1)D~! and, due to convexityu(R') < or equal to widthp is less than2np. Thus, when we are
w(N). Usingn mod (D — 1) = 1, we know thatp:., iS an processing items and packages of wigthfewer than2n
integer multiple of D—!=in, Thus, using Lemma 1 wittk = packages are kept in memory. The key idea in reducing space
Imin» T = protD'™=, andr = (D — 1)D~!, there exists an complexity is to keep only four attributes of each package in
R C R’ such thatp(R) = r. Sincep(R) > 0, u(R'\R) < memory instead of the full contents. In this manner, we use
u(R") < p(N). This is a contradiction tdV being an optimal O(n) space while retaining enough information to reconstruct
solution to the Coin Collector’s problem, and thus any optimthe optimal nodeset in algorithmic postprocessing.

Define from it as a whole. This scheme then prevents any of the
sl _ nonmonotonicity that identical;,’s might bring about.
lmld - (lmdx + lrnm + 1) . . . o
2 In order to assure that the algorithm is fully deterministic
the manner in which packages and single items are merged

For each packag#é, we retain only the following attributes:) >
P 9 Y g must also be taken into account. We choose to combine

1) pu(S) £ X nes 1(is1) nonmerged items before merged items in the case of ties,
2) p(S) = Z(z nes P(i1) in a similar manner to the two-queue bottom-merge method
3) v(S) 215N L of Huffman coding [5], [35]. Thus, in our example, there is
4) (9) & 2 (nesnn, P 1) a point at which the nodé2,2) is chosen (to be merged

wherels 2 {(i,) | 1 > lmia} and Imia 2 {(,0) | 1 = Lmia}- With (3,2) and (4,2)) while the_ identical-weight package
We also defindli, 2 {(i,1) | | < lmia}. of items (5,3), (6,3), and (7,3) is not. This leads to the
ptimal length vectod = (1,2,2,2,2,2,2), rather thanl =

With only these parameters, the “first run” of the algorith :
,1,2,2,3,3,3) or I = (1,1,2,3,2,3,3), which are also

takes O(n) space. The output of this run is the package .) ; .
attributes of the optimal nodesat. Thus, at the end of this optimal. The corresponding nodeset is enclosed within the

first run, we know the value fon, 2 »(N), and we can dashed line in Fig. 2, and the resulting monotonic code tree

considerN as the disjoint union of four sets, shown in Fig. 4'S thg code tree shown in Fig. 1.
1) 4 = nodes inN A I, with indices in[1 } This approach also enables us to sdhe value for dummy
= lo ,— Ny,

. L . variables, equal td) without violating monotonicity. As in
2) B = nodes in¥ N I;, with indices in[n —n, +1,n], bottom-merge Huffman coding, the code with the minimum
3) I' = nodes |_nN M Inia, reverse lexicographical order among optimal codes (and thu
4) 4 = nodes inN N ;. the one with minimum height) is the one produced; reverse
Due to the monotonicity ofV, it is clear thatB = [n —n, + lexicographical order is the lexicographical order of lersg
L,n] X [lmin + 1, lmia — 1] @nd I" = [n —n,, + 1,n] x {lmia}. after their being sorted largest to smallest. An identiesit
Note then thaTD() = (n,)(D~tmin — D'~tmia) /(D — 1) and can be obtained by using the position of the “largest” nod in
p(I') = n, D~"ia, Thus we need merely to recompute whictyackage (in terms of position numbei+3) in order to choose
nodes are ind and in A. those with lower values, as in [32]. However, our approach,
BecauseA is a subset off,;, p(A) = (N) andp(A) = which can be shown to be equivalent via simple induction,
p(N)—p(B)—p(I')—p(A). Given their respective widths} is eliminates the need for keeping track of the maximum value
a minimal weight subset dfl, n—n, | X [l;in+1, lmia —1] @1d of nl + i for each package.
Ais a minimal weight subset ¢f—n,+1, n] X [lmia+1, lmax]-
These are monotonic if the overall nodeset is monotonic. The
nodes at each level of and A can thus be found by recursive
calls to the algorithm. This approach uses ofilyn) space There are changes we can make to the algorithm that, for
while preserving time complexity; one run of an algorithm ogertain inputs, result in even better performance. For gtam
n(lmax — Imin) Nodes is replaced with a series of runs, firgt lnax ~ logp n, then, rather than minimizing the weight of
one onn(lmax — Imin) NOdes, then two on an average of apodes of a certain total width, it is easier to maximize weigh
mMostn(lmax — lmin) /4 NOdes each, then four on an average afver a complementary total width and find the complementary
at mostn(lmax — Imin)/16, and so forth. An optimization of set of nodes. Similarly, if most input symbols have one of
the same complexity is made in [15], where it is proven that handful of probability values, one can consider this and
this yields O(n(lmax — lmin)) time complexity with a linear simplify calculations. These and other similar optimiaat
space requirement. Given the hard boundsifq andl,;,, have been done in the past for the special ca&® = J,
this is alwaysO(n?/D). lmin = 0, D = 2 [36]-{40], though we do not address or
The assumption of distincp,’s puts an undesirable re-extend such improvements here.
striction on our input that we now relax. In doing so, we So far we have assumed that,. is the best upper bound
make the algorithm deterministic, resolving ties that maksn codeword length we could obtain. However, there are many
certain minimization steps of the algorithm implementatiocases in which we can narrow the range of codeword lengths,
dependent. This results in what in some sense is the “betftus making the algorithm faster. For example, since, dsdta
optimal code if multiple monotonic optimal codes exist. previously, we can assume without loss of generality that
Recall thatp is a nonincreasing vector. Thus items of &max < [(n —1)/(D —1)], we can eliminate the bottom row
given width are sorted for use in the Package-Merge alguarithof nodes from consideration in Fig. 2.
this order is used to break ties. For example, if we look Consider also whef,;, = 0. An upper bound of{/;} can
at the problem in Fig. 2 —(6) = 62, n = 7, D = be derived from a theorem and a definition due to Larmore:
3, lmin = 1, lmax = 4 — with probability vectorp = Definition 3: Consider penalty functiong and y. We say
(0.4,0.3,0.14, 0.06, 0.06, 0.02,0.02), then nodeg7,4), (6,4), thatyx is flatter than if, for positive integerd’ > I, (x(I) —
and (5,4) are the first to be grouped, the tie betwe@n4) x(I—1))(p(l")—p(l'—1)) < (¢(1)—e(—=1))(x({")—x({I'—1)).
and (4,4) broken by order. Thus, at any step, all identical12].
width items in one package have adjacent indices. Recdll thaA consequence of the Convex Hull Theorem of [12] is that,
packages of items will be either in the final nodeset or absegiten y flatter thany, for any p, there existp-optimal 1)

VIl. FURTHER REFINEMENTS

[(level) p (width)
Zmin+1 : . . . : : D—l ,,,,,, +1
- - - - = I
A B
Imid ; VA J D lmia
L
: BRI
i [. |
| S |
llnux ! . 1\7 . D,]
T
1 n—n, N n

4 (input symbol)

Fig. 4. The set of node$, an optimal nodeseN, and disjoint subsetsl, B, I', A

and y-optimal 1 such thatl(*) is greater thad™@ in terms algorithm, this can be made linear time given sorted infB&§ [

of reverse lexicographical order. This explains why thedvorand can be made to find a code with the minimum reverse

“flatter” is used. lexicographical order among optimal codes via the bottom-
Penalties flatter than the linear penalty — i.e., conyex- merge variant.

can therefore yield a useful upper bound, reducing comiglexi Clearly, this algorithm finds the optimal code for the lergth

Thus, if l,,;, = 0, we can use the results of a pre-algorithmibounded problem if the resulting code has no codeword longer

Huffman coding of the input symbols to find an upper boundani,,..., whether this be becausg.. is trivial or because of

on codeword length in linear time, one that might be bettether specifications of the problem. If this truncated Hufm

than /... Alternatively, we can use the least probable inpulgorithm fails, then we know that, = [, that is, we

to find a looser upper bound, as in [41]. cannot have that, < lnax for the length-bounded code. This

is an intuitive result, but one worth stating and proving,tas

Whenl,,;, > 1, one can still use a modified pre-algorithmidS used in the next section:

Huffman coding to find an upper bound as longa@) = Lemma 3:If a (truncated) Huffman codex(d) =) for

5. This is done via a modification of the Huffman algorithnimin h@s a codeword longer than sorhg, then there exists

allowing an arbitrary minimuni,,;, and a trivial maximum an optimal length-bounded code for boufighi, lus] with

(€.9-lmax =n 0O [(n—1)/(D —1)]): codewords of lengtf,,. . _
Proof: It suffices to show that, if an optimal code for
Procedure for length-lower-bounded (“truncated the bound[lnin, lmax] has a codeword with length, ., then
Huffman”) coding an optimal code for the bour@l,in, Imax — 1] has a codeword

B B . . with length /...« — 1, since this can be applied inductively
1) Add (D =n) mod (D — 1) dummy items of probabi from l..x = [, (assumingl, is the length of the longest

ity 0. -

2) Combine the items with thé smallest probabilities codewor_d of the truncated Huffman code) g, obtaining
DD i into one item with the combined prob_the desired result. The optimal nodesst for the bound
11712y -y Mip

i —lmin (¢ —)lmin _
ability p; = Zilpil. This item has codeword;, .[lmm’lma"] has widthD (n—D)/(D. 1). Therefore, .
£ : : in the course of the Package-Merge algorithm, we at one point
to be determined later, while these smallest items L . o .
. : : . have (n — D) /(D — 1) packages of widthD~"=i= which
are assigned concatenations of this yet-to-be-determine . .
i1l eventually comprise optimal nodes@éf, these packages

codeword and every possible output symbol, that is, . .)
ci = &0,ci, = Gil,.... e, = &(D — 1). Since these Z\r/r:re]gw\?(/jetlhght no larger than the remaining packages of the

. ; - s
have been assigned in terms &f replace the smallest Consider the nodeseN’ formed by making each(i, l)

Di ithp, i f D. : ;) : i
3) Relteergf Vrvét\,igasmsﬁtonmﬁth the remaining D1 M N into (¢,l — 1). This nodeset is the solution to the
peat p P 9 Package-Merge algorithm for the total widfd—‘min*1(n —

codewords and corresponding probabilities, until on%lmm)/(D _ 1) with boundslmg, — 1 and i _ 1 Let

Dimin jtems are left.
. . .] i(Lin) >
4) Assign all possiblé,,;, long codewords to these |tems,l(l) d?'?‘“?‘ the numberl O_f nodes on levelThen i(lyin) >
— D'min gince at mosD‘=i» nodes can have length;,. The

thus deflr)lng the overall code.baseld on the flxed-lenggf&bset Of V" not of depthi,y, — 1 is thus an optimal solution
code assigned to these combined items.

for boundsli,,;, andi,.« — 1 with total width
This procedure is Huffman coding truncated midway D(n — Dimin)

through coding, the resulting trees serving as subtrees of D lmin (—Di(lmin)>
nodes of identical depth. Excluding the last step, the #lyor D -1

is identical to that shown in [42] to result in an optimathat is, at one point in the algorithm this solution corresg®
Huffman forest. The optimality of the algorithm for length+o the D(n— D'=i») /(D —1)—i(li,) least weighted packages
lower-bounded coding is an immediate consequence of thewidth D~!=i», Due to the bounds 0#(/,,;,), this number
optimality of the forest, as both have the same constrairdé packages is less than the number of packages of the same
and the same value to minimize. As with the usual Huffmanidth in the optimal nodeset for bounds;, and /., — 1

10

(with total width D'min (n — Dlmin) /(D —1)). Thus an optimal for edge weight functions, to be determined. Larmore and
nodeset to the shortened problem can contain the (shiftézytycka used such a representation for binary codes [33];
by-one) original nodeset and must have its maximum lengtiere we use the generalized representation’fary codes.
achieved for all input symbols for which the original nodese
achieves maximum length. [] P2 + 3 + pa + P5 + P6 + P7

Thus we can find whethéf, = I,,.x by merely doing pre-
algorithmic bottom-merge Huffman coding (which, whign#
Imax, results in reduced computation). This is useful in finding
a faster algorithm for largé,.x — lin and linearep. 0

p3 + P4 + pP5 + pPg + P7

Fig. 5. The directed acyclic graph for codimg= 7, D = 3, lymin = 1,
VIIl. A FASTERALGORITHM FOR THELINEAR PENALTY [0y = I, = 4 (0(6) = 6)
A somewhat different reduction, one analogous to the re-) _
duction of [33], is applicable if>(§) = 6. This more specific I order to make this representation correspond to the above
algorithm has similar space complexity and strictly betirme ~Problem, we need a way of making weighted path length
complexity unless oy — lmin = O(logn). However, we only correspond to coding penalty andi a way of assuring a one-to-
sketch this approach here roughly compared to our previod3€ correspondence between valid paths and valid monotonic

exp|anation Of the Simp'er, more general approach_ COde trees. FiI’St |et us deﬁne the Cumulative probabilities
Consider again the code tree representation, that using a n

D-ary tree to represent the code. A codeword is represented si £ Z Dk

by successive splits from the root to a leaf — one split for k=n—i+1

each output symbol — so that the length of a codeword &, that there are-+1 possible values fos;, each of which can
represented by the length of the path to its correspondigg accessed in constant time aften)-time preprocessing.
leaf. A vertex that is not a leaf is called amternal vertex e then use these values to weigh paths such that

each internal vertex of the tree in Fig. 1 is shown as a black o "<

circle. We continue to use dummy variables to ensure that (o, o”) £ { S(Da/"* —a't); Da,/+ *O‘/+ sn

nmod (D —1) = 1, and thus an optimal tree hagl) = 1; 00, Da™ —a™ >mn
equivalently, all internal vertices hav® children. We also where we recall that+ denotesmax(z,0) and oo is neces-
continue to assume without loss of generality that the dutpshry for cases in which the numbers of internal vertices are
tree is monotonic. An optimal tree given the constraints @icompatible; this rules out paths not corresponding tadval

the problem will have no internal vertices at levkl.x, trees. Thus path length and penalty are equal, that is,
(n — Dmin) /(D — 1) internal vertices in th€yax — lin

previous levels, andD'» — 1)/(D — 1) internal vertices — S o o) = 2":)
with no leaves — in the levels above this, if any. The solution — Wiki-1, Q) = _ﬂpﬁ J - tmms
to a linear length-bounded problem can be expressed by the = =

number of internal vertices in the unknown levels, that is, b This graph weighting has theoncave Monge propertgr
guadrangle inequality

Imax —lmin

a; = number of internal vertices

in levels [lmax — %, lmax] (®) w(d, a”)/ +/1IU(0/ +1,a" /+ 1))
<w(@,a"+1)+wlad +1,a
so that we know that < w() ()
1 — Dlmin forall 0 <o’ +1 < a” < (n— Dwin)/(D — 1), since this
max—lmin — — - inequality reduces to the already-assumgdpa/+a/+1-p >
D -1 A . .
, .) DPn—Da’+a'+2 (Wherep; = 0 for ¢ > n). Fig. 5 shows
. If the trt_mcateq Huﬁman coding glgonthm (as in the pregych a graph. A single-edge path correspondsl to—
vious section) fails to find a code with dll < I,,.x, then we (1,2,2,2,2,2,2) while the two-edge path correspondsite
are assured that there exists lan= .., SO thata; can be (1,1,2,2,3,3,3). In practice, only the latter would be under

assumed to be a sequence of strictly increasing integers cdhsideration using the algorithm in question, since the pr
strictly increasing sequence can be represented by a pah Hlgorithmic Huffman coding assured that= I
different type of graph, a directed acyclic graph with \ea§ Thus. if ’

ap=0 and o

max — 3.

numbered) to (n— D'in) /(D —1), e.g., the graph of vertices A N

in Fig. 5. Theith edge of the path begins at_; and ends at

a;, and eachy; represents the number of internal vertices &nd ;

and below the corresponding level of the tree according Yo (8 n 214+ n— D

Fig. 1 shows a code tree with correspondifgs as a count D -1

of internal vertices. The path length is identical to theghéi we wish to find the minimumk-link path from0 to (n —
of the corresponding tree, and the path weight is D'=in) /(D — 1) on this weighted graph of’ vertices. Given

the concave Monge property, am20(viogkloglogn’)_time
w(ai_1, ;) O(n’)-space algorithm for solving this problem is presented
P in [18]. Thus the problem in question can be solved in

Imax —lmin

720 (V108 (lnax—lwim) 105105 1) /D) time and O(n/D) space — [4]

O(n) space if one counts the pre-algorithmic Huffman codin

and/or necessary reconstruction of the Huffman code or-cod

word lengths — an improvement on the Package-Merge-basgg]
approach except fat = O(logn).

(7]

. . . [8]

One might wonder whether the time complexity of the
aforementioned algorithms is the minimum achievable. Bpec
cases (€.9./max ~ logpn for ¢(6) = 9§, lmin = 0, and (9]
D = 2) can be addressed using modifications of the Package-
Merge approach [36]-[40]. Alsgp often implies ranges of [10]
values, obtainable without coding, fér andi,,. This enables [11
one to use values df,;, andi,.. that result in a significant
improvement, as in [19] fot,;, = 0. (12]

An important problem that can be solved with the techys
nigues in this paper is that of finding an optimal code given an
upper bound on fringe, the difference between minimum and
maximum codeword length. One might, for example, wish I[o]
find a fringe-limited prefix code in order to have a near-oplim
code that can be simply implemented with minimal memory®°!
and decompression time, as in Section VIII of [43]. Such a
problem is mentioned in [8, p. 121], where it is suggested thas]
if there areb— 1 codes better than the best code having frin%‘f?]
at mostd, one can find thig-best code with the (bn?)-time
algorithm in [44, pp. 890-891], thus solving the fringe-lieal
problem. However, this presumes we know an upper bouRé!
for b before running this algorithm. More importantly, if a
probability vector is far from uniformp can be very large, [19]
since the number of viable code treesd$1.794 ...") [45].
Thus this is a poor approach in general.

Instead, we can use the aforementioned algorithms for find-
ing the optimal length-bounded code with codeword lengtf&!]
restricted to[l’ — d,1'] for eachl’ € {[logpn], [logp n] +
1,...,|logpn] + d}, keeping the best of these codes; thig2]
covers all feasible cases of fringe upper bounded doy
(Here we again assume, without loss of generality, thgtgl
nmod (D — 1) = 1.) The overall procedure thus has time
complexity O(nd?) for the general convex quasiarithmetid2!
case andhd20(Vieedlogloen) /) when applying the algorithm o5
of Section VIII to the most common penalty of expected
length; the latter approach is of lower complexity unles[%]
d = O(logn). Both algorithms operate with onl§(n) space
complexity.

IX. EXTENSIONS

[20]

[27]
ACKNOWLEDGMENTS [28]

The author wishes to thank Z. Zhang for first bringing g
related problem to his attention and J.D. Morgenthaler for
constructive discussions on this topic. (30]

REFERENCES (31]

[1] C. Dickens,A Christmas Caral London, UK: Chapman and Hall,
1843, available from http://www.gutenberg.org/etext/46

[2] A. Rényi, A Diary on Information Theory New York, NY: John Wiley
& Sons Inc., 1987, original publicatioMNaplo az infornacioelréletrdl,
Gondolat, Budapest, Hungary, 1976.

[3] S. Cass, “Holiday gifts,"IEEE Spectrumvol. 42, no. 11, pp. 59-68,
Nov. 1994, available from http://www.spectrum.ieee.oog05/2133/3.

(32]

(33]

11

I. Newton, Opticks London, UK: Smith and Walford, 1704, available
from http://burndy.mit.edu/Collections/Babson/Onli@pticks.

] E. S. Schwartz, “An optimum encoding with minimum longestie@and

total number of digits,Inf. Contr, vol. 7, no. 1, pp. 3744, Mar. 1964.
A. Moffat and A. Turpin, “On the implementation of minimum neak
dancy prefix codes,JEEE Trans. Communvol. 45, no. 10, pp. 1200—-
1207, Oct. 1997.

I. H. Witten, A. Moffat, and T. Bell Managing Gigabytes2nd ed. San
Francisco, CA: Morgan Kaufmann Publishers, 1999.

J. Abrahams, “Code and parse trees for lossless sourcedieng’
Communications in Information and Systerasl. 1, no. 2, pp. 113-
146, Apr. 2001.

T. C. Hu and A. C. Tucker, “Optimal computer search trees\arthble-
length alphabetic codes3IAM J. Appl. Math.vol. 21, no. 4, pp. 514—
532, Dec. 1971.

D. A. Huffman, “A method for the construction of minimum-rediancy
codes,”Proc. IRE vol. 40, no. 9, pp. 1098-1101, Sept. 1952.

] B. McMillan, “Two inequalities implied by unique deciphability,” IRE

Trans. Inf. Theoryvol. IT-2, no. 4, pp. 115-116, Dec. 1956.

L. L. Larmore, “Minimum delay codes3IAM J. Computvol. 18, no. 1,
pp. 82-94, Feb. 1989.

P. A. Humblet, “Generalization of Huffman coding to miniraizhe
probability of buffer overflow,”|IEEE Trans. Inf. Theoryvol. IT-27,
no. 2, pp. 230-232, Mar. 1981.

J. Cheng, S. Dolinar, M. Effros, and R. McEliece, “Datgansion with
Huffman codes,” irProc., 1995 IEEE Int. Symp. on Information Theory
Sept. 1995, p. 325.

L. L. Larmore and D. S. Hirschberg, “A fast algorithm foptamal
length-limited Huffman codes,J. ACM vol. 37, no. 2, pp. 464-473,
Apr. 1990.

A. ltai, “Optimal alphabetic treesSIAM J. Comput.vol. 5, no. 1, pp.
9-18, Mar. 1976.

L. Gotlieb and D. Wood, “The construction of optimal mulély search
trees and the monotonicity principléiitern. J. Computer Maths, Section
A, vol. 9, no. 1, pp. 17-24, 1981.

B. Schieber, “Computing a minimum-weightlink path in graphs with
the concave Monge propertyJournal of Algorithmsvol. 29, no. 2, pp.
204-222, Nov. 1998.

M. B. Baer, “Source coding for quasiarithmetic penaltieEEE Trans.
Inf. Theory vol. IT-52, no. 10, pp. 4380-4393, Oct. 2006.

A. De Santis and G. Persiano, “An optimal algorithm foe ttonstruction
of optimal prefix codes with given fringe,” irProc., IEEE Data
Compression ConfApr. 8-11, 1991, pp. 297-306.

C. Chang and J. Thomas, “Huffman algebras for indepencirmdom
variables,” Disc. Event Dynamic Systvol. 4, no. 1, pp. 23-40, Feb.
1994.

A. M. Garsia and M. L. Wachs, “A new algorithm for minimum sto
binary trees,"SIAM J. Comput.vol. 6, no. 4, pp. 622—-642, Dec. 1977.
T. C. Hu, D. J. Kleitman, and J. K. Tamaki, “Binary treesiopim under
various criteria,"SIAM J. Appl. Math.vol. 37, no. 2, pp. 246-256, Apr.
1979.

D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching 1st ed. Reading, MA: Addison-Wesley, 1973.

T. C. Hu and J. D. Morgenthaler, “Optimum alphabetic byntrees,” in
Combinatorics and Computer Scienser. Lecture Notes in Computer
Science, vol. 1120. Springer-Verlag, Aug. 1996, pp. 238-24

T. C. Hu, L. L. Larmore, and J. D. Morgenthaler, “Optimatdger alpha-
betic trees in linear time,” ifProc. 13th Annual European Symposium
on Algorithms Springer-Verlag, Oct. 2005, pp. 226-237.

D. E. Knuth, “Optimum binary search treegitta Informatica vol. 1,
pp. 14-25, 1971.

T. C. Hu and K. C. Tan, “Path length of binary search tfe€&AM J.
Appl. Math, vol. 22, no. 2, pp. 225-234, Mar. 1972.

M. R. Garey, “Optimal binary search trees with restrictsmaximal
depth,” SIAM J. Comput.vol. 3, no. 2, pp. 101-110, June 1974.
S.-L. Chan and M. J. Golin, “A dynamic programming algamittfor
constructing optimal “1"-ended binary prefix-free code§EE Trans.
Inf. Theory vol. IT-46, no. 4, pp. 1637-1644, July 2000.

M. J. Golin and G. Rote, “A dynamic programming algorithmr fo
constructing optimal prefix-free codes for unequal lettestsd IEEE
Trans. Inf. Theoryvol. IT-44, no. 5, pp. 1770-1781, Sept. 1998.

L. L. Larmore and T. M. Przytycka, “A fast algorithm for timal height-
limited alphabetic binary-trees3IAM J. Comput.vol. 23, no. 6, pp.
1283-1312, Dec. 1994.

——, “Parallel construction of trees with optimal weightpath length,”
in Proc. 3nd Annual Symposium on Parallel Algorithms and Aechi
tures 1991, pp. 71-80.

(34]

[35]

(36]

(37

(38]

(39]

[40]

[41]
[42]

[43]

[44]

[45]

T. M. Cover and J. A. Thomaglements of Information Theargst ed.
New York, NY: Wiley-Interscience, 1991.

J. van Leeuwen, “On the construction of Huffman trees,Proc. 3rd
Int. Colloquium on Automata, Languages, and Programmiudy 1976,
pp. 382-410.

J. Katajainen, A. Moffat, and A. Turpin, “A fast and spaeconomical
algorithm for length-limited coding,” ifProc., Int. Symp. on Algorithms
and ComputationDec. 1995, p. 1221.

M. Liddell and A. Moffat, “Incremental calculation of ¢éimal length-
restricted codes,” irProc., IEEE Data Compression Confpr. 2—4,
2002, pp. 182-191.

A. Moffat, A. Turpin, and J. Katajainen, “Space-effioteconstruction
of optimal prefix codes,” ifProc., IEEE Data Compression ConMar.
28-30, 1995, pp. 192-202.

A. Turpin and A. Moffat, “Practical length-limited caaly for large
alphabets,"The Comput. J.vol. 38, no. 5, pp. 339-347, 1995.

——, “Efficient implementation of the package-merge pagadifor
generating length-limited codes,” Proc., Computing: The Australasian
Theory Symposiupdan. 29-30, 1996, pp. 187-195.

R. M. Capocelli and A. De Santis, “A note aR-ary Huffman codes,”
IEEE Trans. Inf. Theoryvol. IT-37, no. 1, pp. 174-179, Jan. 1991.
|. Tomescu, “Optimum Huffman forests,J. Universal Comput. Sgi.
vol. 3, no. 7, pp. 813-820, July 1997.

M. Khosravifard, H. Saidi, M. Esmaeili, and T. A. Gullive“The
minimum average code for finite memoryless monotone sourtfeSE
Trans. Inf. Theoryvol. IT-53, no. 3, pp. 955-975, Mar. 2007.

S. Anily and R. Hassin, “Ranking the best binary treeSIAM J.
Comput, vol. 18, no. 5, pp. 882-892, Oct. 1989.

D. W. Boyd, “The asymptotic number of solutions of a dioptiae
equation from coding theoryJ. Comb. Theory, Ser.,Ao0l. 18, no. 2,
pp. 210-215, Mar. 1975.

12

