
1

Twenty (or so) Questions:D-ary Length-Bounded
Prefix Coding

Michael B. Baer,Member, IEEE

Abstract— The Huffman algorithm efficiently finds an optimal
prefix code given a probability mass function. However, some
applications call for restrictions on feasible codes. Length-limited
prefix coding restricts the set of codes to those for which none of
the n codewords is longer than a given length,lmax. This paper
generalizes two algorithms used for length-limited prefix coding,
without increasing complexity, in order to introduce a minimum
codeword length constraint lmin and to be applicable to both
binary and nonbinary codes. Previously, nonbinary cases needed
a slower dynamic programming approach, and — although useful
in limiting memory usage of multiple codes — the minimum
length constraint was not optimized for. These extensions have
various applications including fast decompression, context-based
coding, and a modified version of the game “Twenty Questions.”
This paper also uses them to solve the problem of finding an
optimal code with limited fringe, that is, finding the best code
among codes with a maximum difference between the longest and
shortest codewords. The previously proposed method for solving
this problem was nonpolynomial time.

I. I NTRODUCTION

The parlor game best known as “Twenty Questions” has a
long history and a broad appeal. It was used to advance the
plot of Charles Dickens’A Christmas Carol[1], in which it is
called “Yes and No,” and it was used to explain information
theory in Alfréd Ŕenyi’sA Diary on Information Theory[2], in
which it is called “Bar-kochba.” The two-person game begins
with an answerer thinking up an object and then being asked
a series of questions about the object by a questioner. These
questions must be answered either “yes” or “no.” Usually the
questioner can ask at most twenty questions, and the winner is
determined by whether or not the questioner can sufficiently
surmise the object from these questions.

Many variants of the game exist — both in name and
in rules. A recent popular variant replaces the questioner
with an electronic device [3]. The answerer can answer the
device’s questions with one of four answers — “yes,” “no,”
“sometimes,” and “unknown.” The game also differs from the
traditional game in that the device often needs to ask more
than twenty questions. If the device needs to ask more than
the customary twenty questions, the answerer can view this as
a partial victory, since the device has not answered correctly
given the initial twenty. However, the device eventually gives
up after25 questions if it cannot guess the questioner’s object.

This material was presented in part at the IEEE InternationalSymposium
on Information Theory, Nice, France, June 2007

The author is with Ocarina Networks, Inc., 42 Airport Parkway, San Jose,
CA 95110-1009 USA (e-mail: calbear@1̇eee.org).

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Consider a short example of such a series of questions, with
only “yes,” “no,” and “sometimes” as possible answers. The
object to guess is one of the seven Newtonian colors [4], which
we choose to enumerate as follows:

1) Green (G)
2) Yellow (Y)
3) Red (R)
4) Orange (O)
5) Indigo (I)
6) Violet (V)
7) Blue (B).

A first question we ask might be, “Is the color seen as a warm
color?” If the answer is “sometimes,” the color is green. If it
is “yes,” it is one of colors2 through4. If so, we then ask, “Is
the color considered primary?” “Sometimes” implies yellow,
“yes” implies red, and “no” implies orange. If the color is not
warm, it is one of colors5 through 7, and we ask whether
the color is considered purple, a different question than the
one for colors2 through4. “Sometimes” implies indigo, “yes”
implies violet, and “no” implies blue. Thus we can distinguish
the seven colors with an average of2 − p1 questions ifp1 is
the probability that color in question is green.

This series of questions is expressible using code tree
notation, e.g., [5], in which a tree is formed with each child
split from its parent according to the corresponding output
symbol, i.e., the answer of the corresponding question. A
code tree corresponding to the above series of questions is
shown in Fig. 1, where a left branch means “sometimes,” a
middle branch means “yes,” and a right branch means “no.”
The number of answers possible is referred to by the constant
D and the tree is aD-ary tree. In this case,D = 3 and the
code tree is ternary. The number of outputs,n = 7, is the
number of colors.

The analogous problem in prefix coding is as follows: A
source (the answerer) emits input symbols (objects) drawn
from the alphabetX = {1, 2, . . . , n}, wheren is an integer.
Symbol i has probabilitypi, thus defining probability vector
p = (p1, p2, . . . , pn). Only possible symbols are considered
for coding and these are sorted in decreasing order of probabil-
ity; thuspi > 0 andpi ≤ pj for everyi > j such thati, j ∈ X .
(Since sorting is onlyO(n log n) time andO(n) space, this
can be assumed without loss of generality.) Each input symbol
is encoded into a codeword composed of output symbols of the
D-ary alphabet{0, 1, . . . ,D − 1}. (In the example of colors,
0 represents “sometimes,”1 “yes,” and2 “no.”) The codeword
ci corresponding to input symboli has lengthli, thus defining
length vectorl = (l1, l2, . . . , ln). In Fig. 1, for example,c7
is 223 — the codeword corresponding to blue — so length

2

l7 = 2. The overall code should be a prefix code, that is,
no codewordci should begin with the entirety of another
codewordcj . In the game, equivalently, we should know when
to end the questioning, this being the point at which we know
the answer.

For the variant introduced here, all codewords must have
lengths lying in a given interval [lmin,lmax]. In the example
of the device mentioned above,lmin = 20 and lmax = 25. A
more practical variant is the problem of designing a data codec
that is efficient in terms of not only compression ratio, but also
memory use and coding speed. Moffat and Turpin proposed
a variety of efficient implementations of prefix encoding and
decoding in [6], each involving table lookups rather than code
trees. They noted that the length of the longest codeword
should be limited for computational efficiency’s sake. Compu-
tational efficiency is also improved by restricting the overall
range of codeword lengths, reducing the size of the coding
tables and the expected time of searches required for decoding.
Reducing table size is also important for applications with
limited memory in which many different Huffman codes are
required, due to the use of multiple contexts. Thus, one might
wish to have a minimum codeword size of, say,lmin = 16 bits
and a maximum codeword size oflmax = 32 bits (D = 2).
If expected codeword length for an optimal code found under
these restrictions is too long,lmin can be reduced and the
algorithm rerun until the proper trade-off is found between
compression ratio and complexity (in terms of speed and
memory).

A similar problem is one of determining opcodes of a
microprocessor designed to use variable-length opcodes, each
a certain number of bytes (D = 256) with a lower limit and
an upper limit to size, e.g., a restriction to opcodes being
16, 24, or 32 bits long (lmin = 2, lmax = 4). This problem
clearly falls within the context considered here, as does the
problem of assigning video recorder scheduling codes; these
human-readable decimal codes (D = 10) have lower and
upper bounds on their size, such aslmin = 3 and lmax = 8,
respectively.

Other problems of interest havelmin = 0 and are thus
length limited but have no practical lower bound on length
[7, p. 396]. Yet other problems have not fixed bounds but a
constraint on the difference between minimum and maximum
codeword length, a quantity referred to as fringe [8, p. 121].
As previously noted, large fringe has a detrimental effect on
the speed and memory usage of a decoder. In Section IX of
this paper we discuss how to find such codes.

Note that a problem of sizen is trivial for certain values
of lmin and lmax. If lmin ≥ logD n, then all codewords can
havelmin output symbols, which, by any reasonable objective,
forms an optimal code. Iflmax < logD n, then we cannot
code all input symbols and the problem, as presented here,
has no solution. Since only other values are interesting, we
can assume thatn ∈ (Dlmin ,Dlmax]. For example, for the
modified form of Twenty Questions,D = 4, lmin = 20, and
lmax = 25, so we are only interested in problems where
n ∈ (240, 250]. Since most instances of Twenty Questions
have fewer possible outcomes, this is usually not an interesting
problem after all, as instructive as it is. In fact, the fallibility

of the answerer and ambiguity of the questioner mean that
a decision tree model is not, strictly speaking, correct. For
example, the aforementioned answers to questions about the
seven colors are debatable. The other applications oflength-
boundedprefix coding mentioned previously, however, do fall
within this model.

If we either do not require a minimum or do not require a
maximum, it is easy to find values oflmin or lmax which do not
limit the problem. As mentioned, settinglmin = 0 results in a
trivial minimum, as doeslmin = 1. Similarly, settinglmax = n
or using the hard upper boundlmax = ⌈(n−1)/(D−1)⌉ results
in a trivial maximum value. In the case of trivial maximum
values, one can actually minimize expected codeword length
in linear time given sorted inputs. This is possible because, at
each stage in the standard Huffman coding algorithm, the set
of Huffman trees is an optimalforest (set of trees) [9]. We
describe the linear-time algorithm in Section VII.

If both minimum and maximum values are trivial, Huffman
coding [10] yields a prefix code minimizing expected code-
word length

n
∑

i=1

pili. (1)

The conditions necessary and sufficient for the existence of
a prefix code with length vectorl are the integer constraint,
li ∈ Z+, and the Kraft (McMillan) inequality [11],

κ(l) ,

n
∑

i=1

D−li ≤ 1. (2)

Finding values forl is sufficient to find a corresponding code,
as a code tree with the optimal length vector can be built from
sorted codeword lengths inO(n) time and space.

It is not always obvious that we should minimize the
expected number of questions

∑

i pili (or, equivalently, the
expected number of questions in excess of the firstlmin,

n
∑

i=1

pi(li − lmin)+ (3)

where x+ is x if x is positive, 0 otherwise). Consider the
example of video recorder scheduling codes. In such an
application, one might instead want to minimize mean square
distance fromlmin,

n
∑

i=1

pi(li − lmin)2.

We generalize and investigate how to minimize the value
n

∑

i=1

piϕ(li − lmin) (4)

under the above constraints for anypenalty functionϕ(·)
convex and increasing onR+. Such an additive measurement
of cost is called aquasiarithmetic penalty, in this case a convex
quasiarithmetic penalty.

One such function family isϕ(δ) = (δ + lmin)2 + bδ, a
quadratic objective useful in optimizing a communicationsde-
lay problem [12]. Another function family,ϕ(δ) = Dt(δ+lmin)

3

03

103 113 123 203 213 223

1) G

2) Y 3) R 4) O 5) I 6) V 7) B

αlmax = 3

αlmax−1 = 2

αlmax−2 = 0

Fig. 1. A monotonic code tree forn = 7 and D = 3 with l = (1, 2, 2, 2, 2, 2, 2): Each leaf contains the trinary output code, the corresponding object
number, and the initial for the corresponding color as in Section I. Theαi’s are as defined in Section VIII.

for t > 0, can be used to minimize the probability of buffer
overflow in a queueing system [13].

Other cost functions that might be of interest concern data
expansion [14]. Data expansion occurs where statistics are
perfectly known and uncompressed input data are replaced
by the compressed data. Uncompressed data take up⌈logD n⌉
D-ary symbols per input symbol. This is replaced by data
taking up l(i) D-ary symbols for input itemi. Thus, if
all occurrences wherel(i) exceeds⌈logD n⌉ are prior to
the remaining data, the file temporarily expands by up to
∑n

i=1 p(i)(l(i)−⌈logD n⌉)+ output symbols per input symbol,
or ϕ(δ) = (δ + lmin − ⌈logD n⌉)+. This is minimized by a
simple fixed-length code. It is not a quantity one would usually
want to minimize alone, but an application might trade off this
measure with the more traditional measure of expected length,
using

ϕ(δ) = δ + (λ)(δ − γ)+

whereγ , ⌈logD n⌉− lmin andλ is a positive constant. Such
a formulation linearly trades off the two quantities; Huffman
coding corresponds toλ = 0 and fixed-length coding toλ→
∞. Solving for this family of objectives, we can minimize one
quantity with respect to a constraint on the other or minimize
a variety of nonlinear hybrid coding objectives using convex
hull techniques like those employed in [12].

Mathematically stating the length-bounded problem,

Given p = (p1, . . . , pn), pi > 0;
D ∈ {2, 3, . . .};
convex, monotonically increasing
ϕ : R+ → R+

Minimize{l}
∑

i piϕ(li − lmin)
subject to

∑

iD
−li ≤ 1;

li ∈ {lmin, lmin + 1, . . . , lmax}.
Note that we need not assume that probabilitiespi sum to1;
they could instead be arbitrary positive weights.

Thus, in this paper, given a finiten-symbol input alphabet
with an associated probability vectorp, a D-symbol output
alphabet with codewords of lengths[lmin, lmax] allowed, and
a constant-time-calculable convex penalty functionϕ, we
describe anO(n(lmax − lmin))-timeO(n)-space algorithm for
constructing aϕ-optimal code, and sketch an even less com-
plex reduction for the most convex penalty function,ϕ(δ) =
δ, minimization of expected codeword length. In the next

section, we present a brief review of the relevant literature.
In Section III, we extend toD-ary codes an alternative to
code tree notation first presented in [12]. This notation aids
in solving the problem in question by reformulating it as an
instance of theD-ary Coin Collector’s problem, presented in
Section IV as an extension of the (binary) Coin Collector’s
problem [15]. An extension of the Package-Merge algorithm
solves this problem; we introduce the reduction and resulting
algorithm in Section V. We make itO(n) space in Section VI
and refine it in Section VII. The alternative approach for the
expected length problem of minimizing (1) — i.e.,ϕ(δ) = δ
— is often faster; this approach is sketched in Section VIII.
Algorithmic modifications, applications, possible extensions of
this work are discussed in Section IX.

II. PRIOR WORK

Reviewing how the problem in question differs from binary
Huffman coding:

1) It can be nonbinary, a case considered by Huffman in
his original paper [10];

2) There is a maximum codeword length, a restriction
previously considered, e.g., [16] inO(n3lmax logD)
time [17] andO(n2 logD) space, but solved efficiently
only for binary coding, e.g., [15] inO(nlmax) timeO(n)
space and most efficiently in [18];

3) There is a minimum codeword length, a novel restric-
tion;

4) The penalty can be nonlinear, a modification previously
considered, but only for binary coding, e.g., [19].

There are several methods for finding optimal codes for
various constraints and various types of optimality; we review
the three most common families of methods here. Note that
other methods fall outside of these families, such as a linear-
time method for finding minimum expected length codewords
for a uniform distribution with a given fringe [20]. (This differs
from the limited-fringe problem of Section IX, in which the
distribution need not be uniform and fringe is upper-bounded,
not fixed.)

The first and computationally simplest of these are
Huffman-like methods, originating with Huffman in 1952 [10]
and discussed in, e.g., [21]. Such algorithms are generally
linear time given sorted weights and thusO(n log n) time in

4

general. These are useful for a variety of problems involving
penalties in linear, exponential, or minimax form, but not
for other nonlinearities nor for length-limited coding. More
complex variants of this algorithm are used to find optimal
alphabetic codes, that is, codes with codewords constrained
to be in a given lexicographical order. These variants are in
the Hu-Tucker family of algorithms [9], [22], [23], which, at
O(n log n) time andO(n) space [24], are the most efficient
algorithms known for solving such problems (although some
instances can be solved in linear time [25], [26]).

The second type of method, dynamic programming, is also
conceptually simple but much more computationally com-
plex. Gilbert and Moore proposed a dynamic programming
approach in 1959 for finding optimal alphabetic codes, and,
unlike the Hu-Tucker algorithm, this approach is readily
extensible to search trees [27]. Such an approach can also
solve the nonalphabetic problem as a special case, e.g., [16],
[28], [29], since any probability vector satisfyingpi ≤ pj for
every i > j has an optimal alphabetic code that optimizes
the nonalphabetic case. A different dynamic programming
approach can be used to find optimal “1”-ended codes [30]
and optimal codes with unequal letters costs [31]. Itai [16]
used dynamic programming to optimize a large variety of
coding and search tree problems, including nonbinary length-
limited coding, which is done withO(n2lmax logD) time and
O(n2 logD) space by a reduction to the alphabetic case. We
reduce complexity significantly in this paper.

The third family is that of Package-Merge-based algorithms,
and this is the type of approach we use for the generalized
algorithm considered here. Introduced in 1990 by Larmore and
Hirschberg [15], this approach is most often used for binary
length-limited linear-penalty Huffman coding, although it has
been extended for application to binary alphabetic codes [32]
and to binary convex quasiarithmetic penalty functions [19].
The algorithms in this approach generally haveO(nlmax)-time
O(n)-space complexity, although space complexity can vary
by application and implementation, and the alphabetic variant
and some nonquasiarithmetic (and thus nonlinear) variants
have slightly higher time complexity (O(nlmax log n)).

To use this approach for nonbinary coding with a lower
bound on codeword length, we need to alter the approach,
generalizing to the problem of interest. The minimum size
constraint on codeword length requires a relatively simple
change of solution range. The nonbinary coding generalization
is a bit more involved; it requires first modifying the Package-
Merge algorithm to allow for an arbitrary numerical base
(binary, ternary, etc.), then modifying the coding problemto
allow for a provable reduction to the modified Package-Merge
algorithm. At times “dummy” inputs are added in order to
assist in finding an optimal nonbinary code. In order to make
the algorithm precise, theO(n(lmax− lmin))-timeO(n)-space
algorithm, unlike some other implementations [15], minimizes
height (that is, maximum codeword length) among optimal
codes (if multiple optimal codes exist).

III. N ODESETNOTATION

Before presenting an algorithm for optimizing the above
problem, we introduce a notation for codes that generalizes

one first presented in [12] and modified in [19]. Nodeset
notation, an alternative to code tree notation, has previously
been used for binary alphabets, but not for generalD-ary
alphabet coding, thus the need for generalization.

The key idea:Each node(i, l) represents both the share of
the penalty (4) (weight) and the (scaled) share of the Kraft
sum (2) (width) assumed for thelth bit of the ith codeword.
By showing that total weight is an increasing function of the
penalty and that there is a one-to-one correspondence between
an optimal code and a corresponding optimal nodeset, we
reduce the problem to an efficiently solvable problem, the Coin
Collector’s problem.

In order to do this, we first need to make a modification to
the problem analogous to one Huffman made in his original
nonbinary solution. We must in some cases add a “dummy”
input or “dummy” inputs of infinitesimal probabilitypi = ǫ >
0 to the probability vector to assure that the optimal code
has the Kraft inequality satisfied with equality, an assumption
underlying both the Huffman algorithm and ours. The positive
probabilities of these dummy inputs mean that codes obtained
could be slightly suboptimal, but we later specify an algorithm
whereǫ = 0, obviating this concern.

As with traditional Huffman coding [10], the number of
dummy values needed is(D − n) mod (D − 1), where

x mod y , x− y⌊x/y⌋

for all integersx (not just nonnegative integers). Such dummy
inputs allow us to assume that the optimal tree (for real plus
dummy items) is an optimal full tree (i.e., thatκ(l) = 1,
where κ is as defined in (2)). For sufficiently smallǫ, the
code will be identical to that forǫ = 0, and, as in traditional
Huffman coding, nondummy codewords are identical to the
codewords of an optimal code for the original input distribu-
tion. We can thus assume for our algorithm thatκ(l) = 1 and
n mod (D − 1) ≡ 1.

With this we now presentnodesetnotation:
Definition 1: A node is an ordered pair of integers(i, l)

such thati ∈ {1, . . . , n} and l ∈ {lmin + 1, . . . , lmax}. Call
the set of all possible nodesI. This set can be arranged in an
n×(lmax−lmin) grid, e.g., Fig. 2. The set of nodes, ornodeset,
corresponding to input symboli (assigned codewordci with
length li) is the set of the firstli − lmin nodes of columni,
that is, ηl(i) , {(j, l) | j = i, l ∈ {lmin + 1, . . . , li}}. The
nodeset corresponding to length vectorl is η(l) ,

⋃

i ηl(i);
this corresponds to a set ofn codewords, a code. Thus, in
Fig. 2, the dashed line surrounds a nodeset corresponding to
l = (1, 2, 2, 2, 2, 2, 2). We say a node(i, l) haswidth ρ(i, l) ,

D−l and weightµ(i, l) , piϕ(l − lmin) − piϕ(l − lmin − 1),
as shown in the example in Fig. 2. Note that ifϕ(l) = l,
µ(i, l) = pi.

We must emphasize that the above “nodes” are unlike nodes
in a graph; similar structures are sometimes instead calledtiles
[33], but we retain the original, more prevalent term “nodes.”
Given valid nodesetN ⊆ I, it is straightforward to find
the corresponding length vector and, if it satisfies the Kraft
inequality, a code.

5

l (level)

i (input symbol)

µ(1, 2) = p1 µ(2, 2) = p2 µ(3, 2) = p3 µ(4, 2) = p4 µ(5, 2) = p5 µ(6, 2) = p6 µ(7, 2) = p7

µ(1, 3) = 3p1 µ(2, 3) = 3p2 µ(3, 3) = 3p3 µ(4, 3) = 3p4 µ(5, 3) = 3p5 µ(6, 3) = 3p6 µ(7, 3) = 3p7

µ(1, 4) = 5p1 µ(2, 4) = 5p2 µ(3, 4) = 5p3 µ(4, 4) = 5p4 µ(5, 4) = 5p5 µ(6, 4) = 5p6 µ(7, 4) = 5p7

ρ(1, 2) = 1
9

ρ(2, 2) = 1
9

ρ(3, 2) = 1
9

ρ(4, 2) = 1
9

ρ(5, 2) = 1
9

ρ(6, 2) = 1
9

ρ(7, 2) = 1
9

ρ(1, 3) = 1
27

ρ(2, 3) = 1
27

ρ(3, 3) = 1
27

ρ(4, 3) = 1
27

ρ(5, 3) = 1
27

ρ(6, 3) = 1
27

ρ(7, 3) = 1
27

ρ(1, 4) = 1
81

ρ(2, 4) = 1
81

ρ(3, 4) = 1
81

ρ(4, 4) = 1
81

ρ(5, 4) = 1
81

ρ(6, 4) = 1
81

ρ(7, 4) = 1
81

1 2

2

3

3

4

4

5 6 7

Fig. 2. The set of nodesI with widths {ρ(i, l)} and weights{µ(i, l)} for ϕ(δ) = δ2, n = 7, D = 3, lmin = 1, lmax = 4

IV. T HE D-ARY COIN COLLECTOR’ S PROBLEM AND THE

PACKAGE-MERGEALGORITHM

We find optimal codes by first solving a related problem, the
Coin Collector’s problem. LetDZ denote the set of all integer
powers of a fixed integerD > 1. The Coin Collector’s problem
of size m considers “coins” indexed byi ∈ {1, 2, . . . ,m}.
Each coin has a width,ρi ∈ DZ; one can think of width as
coin face value, e.g.,ρi = 0.25 = 2−2 for a quarter dollar
(25 cents). Each coin also has a weight,µi ∈ R. The final
problem parameter is total width, denotedρtot. The problem
is then:

Minimize{B⊆{1,...,m}}
∑

i∈B µi

subject to
∑

i∈B ρi = ρtot

where m ∈ Z+

µi ∈ R

ρi ∈ DZ

ρtot ∈ R+.

(5)

We thus wish to choose coins with total widthρtot such that
their total weight is as small as possible. This problem is
an input-restricted variant of the knapsack problem. However,
given sorted inputs, a linear-time solution to (5) forD = 2
was proposed in [15]. The algorithm in question is called the
Package-Merge algorithmand we extend it here to arbitraryD.

In our notation, we usei ∈ {1, . . . ,m} to denote both the
index of a coin and the coin itself, andI to represent the
m items along with their weights and widths. The optimal
solution, a function of total widthρtot and itemsI, is denoted
CC(I, ρtot) (the optimal coin collection forI andρtot). Note
that, due to ties, this need not be unique, but we assume that
one of the optimal solutions is chosen; at the end of Section VI,
we discuss how to break ties.

Because we only consider cases in which a solution exists,
ρtot = ωρpow for some ρpow ∈ DZ and ω ∈ Z+. Here,
assumingρtot > 0, ρpow andω are the unique pair of a power
of D and an integer that is not a multiple ofD, respectively,
which, multiplied, formρtot. If ρtot = 0, ω andρpow are not
used. Note thatρpow need not be an integer.
Algorithm variables
At any point in the algorithm, given nontrivialI andρtot, we

use the following definitions:
Remainder

ρpow , the uniquex ∈ DZ

such thatρtot

x
∈ Z\DZ

Minimum width
ρ∗ , mini∈I ρi

(noteρ∗ ∈ DZ)

Small width set
I∗ , {i | ρi = ρ∗}

(noteI∗ 6= ∅)

“First” item
i∗ , arg mini∈I∗µi

“First” package

P∗ ,























P such that
|P| = D,
P ⊆ I∗,
P � I∗\P, |I∗| ≥ D

∅, |I∗| < D

whereDZ denotes integer multiples ofD and P � I∗\P
denotes that, for alli ∈ P and j ∈ I∗\P, µi ≤ µj . Then the
following is a recursive description of the algorithm:

RecursiveD-ary Package-Merge Procedure
Basis.ρtot = 0: CC(I, ρtot) = ∅.
Case 1. ρ∗ = ρpow and I 6= ∅: CC(I, ρtot) =

CC(I\{i∗}, ρtot − ρ∗) ∪ {i∗}.
Case 2a.ρ∗ < ρpow, I 6= ∅, and |I∗| < D: CC(I, ρtot) =

CC(I\I∗, ρtot).
Case 2b.ρ∗ < ρpow, I 6= ∅, and |I∗| ≥ D: Createi′, a

new item with weightµi′ =
∑

i∈P∗ µi and widthρi′ = Dρ∗.
This new item is thus a combined item, orpackage, formed
by combining theD least weighted items of widthρ∗. Let
S = CC(I\P∗∪{i′}, ρtot) (the optimization of the packaged
version). Ifi′ ∈ S, thenCC(I, ρtot) = S\{i′}∪P∗; otherwise,
CC(I, ρtot) = S.

Theorem 1:If an optimal solution to the Coin Collector’s
problem exists, the above recursive (Package-Merge) algo-
rithm will terminate with an optimal solution.

6

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

ρtot = 0 = 03

ρtot = 3 = 103

ρtot = 5 = 123

µ = 1

µ = 1 µ = 1 µ = 1

µ = 1

µ = 1

µ = 1

µ = 2µ = 4

µ = 5

µ = 5

µ = 5

µ = 7

µ = 7

ρ = 1 ρ = 1 ρ = 1 ρ = 1 ρ = 1

ρ = 3ρ = 3

ρ = 3

ρ = 3

∑

µ = 7

Fig. 3. A simple example of the Package-Merge algorithm

Proof: We show that the Package-Merge algorithm
produces an optimal solution via induction on the number of
input items. The basis is trivially correct, and each inductive
case reduces the number of items by at least one. The inductive
hypothesis onρtot ≥ 0 and I 6= ∅ is that the algorithm is
correct for any problem instance with fewer input items than
instance(I, ρtot).

If ρ∗ > ρpow > 0, or if I = ∅ andρtot 6= 0, then there is
no solution to the problem, contrary to our assumption. Thus
all feasible cases are covered by those given in the procedure.
Case 1 indicates that the solution must contain at least one
element (item or package) of widthρ∗. These must include
the minimum weight item inI∗, since otherwise we could
substitute one of the items with this “first” item and achieve
improvement. Case 2 indicates that the solution must contain
a number of elements of widthρ∗ that is a multiple ofD. If
this number is0, none of the items inP∗ are in the solution. If
it is not, then they all are. Thus, ifP∗ = ∅, the number is0,
and we have Case 2a. If not, we may “package” the items,
considering the replaced package as one item, as in Case 2b.
Thus the inductive hypothesis holds.

Fig. 3 presents a simple example of this algorithm at work
for D = 3, finding minimum total weight items of total
width ρtot = 5 (or, in ternary,123). In the figure, item width
represents numeric width and item area represents numeric
weight. Initially, as shown in the top row, the minimum weight
item has widthρ∗ = ρi∗ = ρpow = 1. This item is put into
the solution set, and the next step repeats the task on the
items remaining outside the solution set. Then, the remaining
minimum width items are packaged into a merged item of
width 3 (103), as in the middle row. Finally, the minimum
weight item/package with widthρ∗ = ρi∗ = ρpow = 3 is
added to complete the solution set, which is now of weight7.
The remaining packaged item is left out in this case; when
the algorithm is used for coding, several items are usually left

out of the optimal set. Given input sorted first by width then
weight, the resulting algorithm isO(m) time and space.

V. A GENERAL ALGORITHM

We now formalize the reduction from the coding problem
to the Coin Collector’s problem. This generalizes the similar
reduction shown in [19] for binary codes with only a limit
on maximum length, which is in turn a generalization of [15]
for length-limited binary codes with linearϕ, the traditional
penalty function.

We assert that any optimal solutionN of the Coin Collec-
tor’s problem with total width

ρtot =
n−Dlmin

D − 1
D−lmin

on coinsI (identical to the set of all possible nodesI) is a
nodeset for an optimal solution of the coding problem. This
yields a suitable method for solving the problem.

To show this reduction, we first defineρ(N) in a natural
manner for anyN = η(l):

ρ(N) ,
∑

(i,l)∈N

ρ(i, l)

=

n
∑

i=1

li
∑

l=lmin+1

D−l

=

n
∑

i=1

D−lmin −D−li

D − 1

=
nD−lmin − κ(l)

D − 1

whereκ(l) is the Kraft sum (2). Givenn mod (D − 1) ≡ 1,
all optimal codes have the Kraft inequality satisfied with
equality; otherwise, the longest codeword length could be
shortened by one, strictly decreasing the penalty without

7

violating the inequality. Thus the optimal solution hasκ(l) = 1
and

ρ(N) =
n−Dlmin

D − 1
D−lmin .

Also define:

δϕ(l) , ϕ(l) − ϕ(l − 1)

µ(N) ,
∑

(i,l)∈N

µ(i, l).

Note that

µ(N) =
∑

(i,l)∈N

µ(i, l)

=
n

∑

i=1

li
∑

l=lmin+1

piδϕ(l − lmin)

=
n

∑

i=1

piϕ(li − lmin) −
n

∑

i=1

piϕ(0).

Since the subtracted term is a constant, if the optimal nodeset
corresponds to a valid code, solving the Coin Collector’s
problem solves this coding problem. To prove the reduction,
we need to prove that the optimal nodeset indeed corresponds
to a valid code. We begin with the following lemma:

Lemma 1:Suppose thatN is a nodeset of widthxD−k +r
wherek andx are integers and0 < r < D−k. ThenN has a
subsetR with width r.

Proof: Let us use induction on the cardinality of the set.
The base case|N | = 1 is trivial since thenx = 0. Assume
the lemma holds for all|N | < n, and suppose|Ñ | = n.
Let ρ∗ = minj∈Ñ ρj and j∗ = arg minj∈Ñρj . We can view
item j∗ of width ρ∗ ∈ DZ as the smallest contributor to the
width of Ñ andr as the portion of theD-ary expansion of the
width of Ñ to the right ofD−k. Then r must be an integer
multiple of ρ∗. If r = ρ∗, R = {j∗} is a solution. Otherwise
let N ′ = Ñ\{j∗} (so |N ′| = n− 1) and letR′ be the subset
obtained from solving the lemma for setN ′ of width r − ρ∗.
ThenR = R′ ∪ {j∗}.

We now prove the reduction:
Theorem 2:Any N that is a solution of the Coin Collector’s

problem for

ρtot = ρ(N) =
n−Dlmin

D − 1
D−lmin

has a corresponding length vectorl
N such thatN = η(lN)

andµ(N) = minl

∑

i piϕ(li − lmin) − ϕ(0)
∑

i pi.
Proof: Any optimal length vector nodeset hasρ(η(l)) =

ρtot. SupposeN is a solution to the Coin Collector’s problem
but is not a valid nodeset of a length vector. Then there exists
an (i, l) with l ∈ [lmin + 2, lmax] such that(i, l) ∈ N and
(i, l − 1) ∈ I\N . Let R′ = N ∪ {(i, l − 1)}\{(i, l)}. Then
ρ(R′) = ρtot + (D − 1)D−l and, due to convexity,µ(R′) ≤
µ(N). Using n mod (D − 1) ≡ 1, we know thatρtot is an
integer multiple ofD−lmin . Thus, using Lemma 1 withk =
lmin, x = ρtotD

lmin , and r = (D − 1)D−l, there exists an
R ⊂ R′ such thatρ(R) = r. Sinceµ(R) > 0, µ(R′\R) <
µ(R′) ≤ µ(N). This is a contradiction toN being an optimal
solution to the Coin Collector’s problem, and thus any optimal

solution of the Coin Collector’s problem corresponds to an
optimal length vector.

Because the Coin Collector’s problem is linear in time and
space — same-width inputs are presorted by weight, numerical
operations and comparisons are constant time — the overall
algorithm finds an optimal code inO(n(lmax − lmin)) time
and space. Space complexity, however, can be decreased.

VI. A D ETERMINISTICO(n)-SPACE ALGORITHM

If pi = pj , we are guaranteed no particular inequality
relation betweenli and lj since we did not specify a method
for breaking ties. Thus the length vector returned by the
algorithm need not have the property thatli ≤ lj whenever
i < j. We would like to have an algorithm that has such a
monotonicity property.

Definition 2: A monotonic nodeset,N , is one with the
following properties:

(i, l) ∈ N ⇒ (i+ 1, l) ∈ N for i < n (6)

(i, l) ∈ N ⇒ (i, l − 1) ∈ N for l > lmin + 1. (7)

In other words, a nodeset is monotonic if and only if it corre-
sponds to a length vectorl with lengths sorted in increasing
order; this definition is equivalent to that given in [15].

Examples of monotonic nodesets include the sets of nodes
enclosed by dashed lines in Fig. 2 and Fig. 4. In the latter
case,n = 21, D = 3, lmin = 2, and lmax = 8, soρtot = 2/3.
As indicated, ifpi = pj for somei and j, then an optimal
nodeset need not be monotonic. However, if all probabilities
are distinct, the optimal nodeset is monotonic.

Lemma 2: If p has no repeated values, then any optimal
solutionN = CC(I, n− 1) is monotonic.

Proof: The second monotonic property (7) was proved
for optimal nodesets in Theorem 2. The first property (6) can
be shown via a simple exchange argument. Consider optimal
l with i > j so thatpi < pj , and also considerl′ with lengths
for inputs i and j interchanged, as in [34, pp. 97–98]. Then

∑

k pkϕ(l′k − lmin) − ∑

k pkϕ(lk − lmin)
= (pj − pi) [ϕ(li − lmin) − ϕ(lj − lmin)]
≤ 0

where the inequality is to due to the optimality ofl. Since
pj − pi > 0 and ϕ is monotonically increasing,li ≥ lj for
all i > j and an optimal nodeset without repeatedp must be
monotonic.

Taking advantage of monotonicity in a Package-Merge
coding implementation to trade off a constant factor of time
for drastically reduced space complexity is done in [12] for
length-limited binary codes. We extend this to the length-
bounded problem, first forp without repeated values, then
for arbitraryp.

Note that the total width of items that are each less than
or equal to widthρ is less than2nρ. Thus, when we are
processing items and packages of widthρ, fewer than2n
packages are kept in memory. The key idea in reducing space
complexity is to keep only four attributes of each package in
memory instead of the full contents. In this manner, we use
O(n) space while retaining enough information to reconstruct
the optimal nodeset in algorithmic postprocessing.

8

Define

lmid ,

⌊

1

2
(lmax + lmin + 1)

⌋

.

For each packageS, we retain only the following attributes:

1) µ(S) ,
∑

(i,l)∈S µ(i, l)

2) ρ(S) ,
∑

(i,l)∈S ρ(i, l)

3) ν(S) , |S ∩ Imid|
4) ψ(S) ,

∑

(i,l)∈S∩Ihi
ρ(i, l)

whereIhi , {(i, l) | l > lmid} andImid , {(i, l) | l = lmid}.
We also defineIlo , {(i, l) | l < lmid}.

With only these parameters, the “first run” of the algorithm
takes O(n) space. The output of this run is the package
attributes of the optimal nodesetN . Thus, at the end of this
first run, we know the value fornν , ν(N), and we can
considerN as the disjoint union of four sets, shown in Fig. 4:

1) A = nodes inN ∩ Ilo with indices in[1, n− nν],
2) B = nodes inN ∩ Ilo with indices in[n− nν + 1, n],
3) Γ = nodes inN ∩ Imid,
4) ∆ = nodes inN ∩ Ihi.

Due to the monotonicity ofN , it is clear thatB = [n− nν +
1, n]× [lmin + 1, lmid − 1] andΓ = [n− nν + 1, n]× {lmid}.
Note then thatρ(B) = (nν)(D−lmin −D1−lmid)/(D− 1) and
ρ(Γ) = nνD

−lmid . Thus we need merely to recompute which
nodes are inA and in∆.

Because∆ is a subset ofIhi, ρ(∆) = ψ(N) and ρ(A) =
ρ(N)−ρ(B)−ρ(Γ)−ρ(∆). Given their respective widths,A is
a minimal weight subset of[1, n−nν]×[lmin+1, lmid−1] and
∆ is a minimal weight subset of[n−nν+1, n]×[lmid+1, lmax].
These are monotonic if the overall nodeset is monotonic. The
nodes at each level ofA and∆ can thus be found by recursive
calls to the algorithm. This approach uses onlyO(n) space
while preserving time complexity; one run of an algorithm on
n(lmax − lmin) nodes is replaced with a series of runs, first
one onn(lmax − lmin) nodes, then two on an average of at
mostn(lmax− lmin)/4 nodes each, then four on an average of
at mostn(lmax − lmin)/16, and so forth. An optimization of
the same complexity is made in [15], where it is proven that
this yieldsO(n(lmax − lmin)) time complexity with a linear
space requirement. Given the hard bounds forlmax and lmin,
this is alwaysO(n2/D).

The assumption of distinctpi’s puts an undesirable re-
striction on our input that we now relax. In doing so, we
make the algorithm deterministic, resolving ties that make
certain minimization steps of the algorithm implementation
dependent. This results in what in some sense is the “best”
optimal code if multiple monotonic optimal codes exist.

Recall thatp is a nonincreasing vector. Thus items of a
given width are sorted for use in the Package-Merge algorithm;
this order is used to break ties. For example, if we look
at the problem in Fig. 2 —ϕ(δ) = δ2, n = 7, D =
3, lmin = 1, lmax = 4 — with probability vector p =
(0.4, 0.3, 0.14, 0.06, 0.06, 0.02, 0.02), then nodes(7, 4), (6, 4),
and (5, 4) are the first to be grouped, the tie between(5, 4)
and (4, 4) broken by order. Thus, at any step, all identical-
width items in one package have adjacent indices. Recall that
packages of items will be either in the final nodeset or absent

from it as a whole. This scheme then prevents any of the
nonmonotonicity that identicalpi’s might bring about.

In order to assure that the algorithm is fully deterministic,
the manner in which packages and single items are merged
must also be taken into account. We choose to combine
nonmerged items before merged items in the case of ties,
in a similar manner to the two-queue bottom-merge method
of Huffman coding [5], [35]. Thus, in our example, there is
a point at which the node(2, 2) is chosen (to be merged
with (3, 2) and (4, 2)) while the identical-weight package
of items (5, 3), (6, 3), and (7, 3) is not. This leads to the
optimal length vectorl = (1, 2, 2, 2, 2, 2, 2), rather thanl =
(1, 1, 2, 2, 3, 3, 3) or l = (1, 1, 2, 3, 2, 3, 3), which are also
optimal. The corresponding nodeset is enclosed within the
dashed line in Fig. 2, and the resulting monotonic code tree
is the code tree shown in Fig. 1.

This approach also enables us to setǫ, the value for dummy
variables, equal to0 without violating monotonicity. As in
bottom-merge Huffman coding, the code with the minimum
reverse lexicographical order among optimal codes (and thus
the one with minimum height) is the one produced; reverse
lexicographical order is the lexicographical order of lengths
after their being sorted largest to smallest. An identical result
can be obtained by using the position of the “largest” node ina
package (in terms of position numbernl+i) in order to choose
those with lower values, as in [32]. However, our approach,
which can be shown to be equivalent via simple induction,
eliminates the need for keeping track of the maximum value
of nl + i for each package.

VII. F URTHER REFINEMENTS

There are changes we can make to the algorithm that, for
certain inputs, result in even better performance. For example,
if lmax ≈ logD n, then, rather than minimizing the weight of
nodes of a certain total width, it is easier to maximize weight
over a complementary total width and find the complementary
set of nodes. Similarly, if most input symbols have one of
a handful of probability values, one can consider this and
simplify calculations. These and other similar optimizations
have been done in the past for the special caseϕ(δ) = δ,
lmin = 0, D = 2 [36]–[40], though we do not address or
extend such improvements here.

So far we have assumed thatlmax is the best upper bound
on codeword length we could obtain. However, there are many
cases in which we can narrow the range of codeword lengths,
thus making the algorithm faster. For example, since, as stated
previously, we can assume without loss of generality that
lmax ≤ ⌈(n− 1)/(D − 1)⌉, we can eliminate the bottom row
of nodes from consideration in Fig. 2.

Consider also whenlmin = 0. An upper bound on{li} can
be derived from a theorem and a definition due to Larmore:

Definition 3: Consider penalty functionsϕ andχ. We say
thatχ is flatter thanϕ if, for positive integersl′ > l, (χ(l)−
χ(l−1))(ϕ(l′)−ϕ(l′−1)) ≤ (ϕ(l)−ϕ(l−1))(χ(l′)−χ(l′−1)).
[12].

A consequence of the Convex Hull Theorem of [12] is that,
given χ flatter thanϕ, for any p, there existϕ-optimal l(ϕ)

9

A B

Γ

∆

N

D−lmin+1

D−lmid

D−lmax

lmin + 1

lmid

lmax

nn− nν1

l (level)

i (input symbol)

ρ (width)

Fig. 4. The set of nodesI, an optimal nodesetN , and disjoint subsetsA, B, Γ , ∆

andχ-optimal l(χ) such thatl(ϕ) is greater thanl(χ) in terms
of reverse lexicographical order. This explains why the word
“flatter” is used.

Penalties flatter than the linear penalty — i.e., convexϕ —
can therefore yield a useful upper bound, reducing complexity.
Thus, if lmin = 0, we can use the results of a pre-algorithmic
Huffman coding of the input symbols to find an upper bound
on codeword length in linear time, one that might be better
than lmax. Alternatively, we can use the least probable input
to find a looser upper bound, as in [41].

Whenlmin > 1, one can still use a modified pre-algorithmic
Huffman coding to find an upper bound as long asϕ(δ) =
δ. This is done via a modification of the Huffman algorithm
allowing an arbitrary minimumlmin and a trivial maximum
(e.g., lmax = n or ⌈(n− 1)/(D − 1)⌉):

Procedure for length-lower-bounded (“truncated
Huffman”) coding

1) Add (D − n) mod (D − 1) dummy items of probabil-
ity 0.

2) Combine the items with theD smallest probabilities
pi1 , pi2 , . . . , piD

into one item with the combined prob-
ability p̃i =

∑D
i=1 pi1 . This item has codeword̃ci,

to be determined later, while theseD smallest items
are assigned concatenations of this yet-to-be-determined
codeword and every possible output symbol, that is,
ci1 = c̃i0, ci2 = c̃i1, . . . , ciD

= c̃i(D − 1). Since these
have been assigned in terms ofc̃i, replace the smallest
D items with p̃i in p to form p̃.

3) Repeat previous step, now with the remainingn−D+1
codewords and corresponding probabilities, until only
Dlmin items are left.

4) Assign all possiblelmin long codewords to these items,
thus defining the overall code based on the fixed-length
code assigned to these combined items.

This procedure is Huffman coding truncated midway
through coding, the resulting trees serving as subtrees of
nodes of identical depth. Excluding the last step, the algorithm
is identical to that shown in [42] to result in an optimal
Huffman forest. The optimality of the algorithm for length-
lower-bounded coding is an immediate consequence of the
optimality of the forest, as both have the same constraints
and the same value to minimize. As with the usual Huffman

algorithm, this can be made linear time given sorted inputs [35]
and can be made to find a code with the minimum reverse
lexicographical order among optimal codes via the bottom-
merge variant.

Clearly, this algorithm finds the optimal code for the length-
bounded problem if the resulting code has no codeword longer
thanlmax, whether this be becauselmax is trivial or because of
other specifications of the problem. If this truncated Huffman
algorithm fails, then we know thatln = lmax, that is, we
cannot have thatln < lmax for the length-bounded code. This
is an intuitive result, but one worth stating and proving, asit
is used in the next section:

Lemma 3: If a (truncated) Huffman code (ϕ(δ) = δ) for
lmin has a codeword longer than somelub, then there exists
an optimal length-bounded code for bound[lmin, lub] with
codewords of lengthlub.

Proof: It suffices to show that, if an optimal code for
the bound[lmin, lmax] has a codeword with lengthlmax, then
an optimal code for the bound[lmin, lmax−1] has a codeword
with length lmax − 1, since this can be applied inductively
from lmax = ln (assumingln is the length of the longest
codeword of the truncated Huffman code) tolub, obtaining
the desired result. The optimal nodesetN for the bound
[lmin, lmax] has widthD−lmin(n−Dlmin)/(D−1). Therefore,
in the course of the Package-Merge algorithm, we at one point
have(n −Dlmin)/(D − 1) packages of widthD−lmin which
will eventually comprise optimal nodesetN , these packages
having weight no larger than the remaining packages of the
same width.

Consider the nodesetN ′ formed by making each(i, l)
in N into (i, l − 1). This nodeset is the solution to the
Package-Merge algorithm for the total widthD−lmin+1(n −
Dlmin)/(D − 1) with bounds lmin − 1 and lmax − 1. Let
i(l) denote the number of nodes on levell. Then i(lmin) ≥
n−Dlmin since at mostDlmin nodes can have lengthlmin. The
subset ofN ′ not of depthlmin − 1 is thus an optimal solution
for boundslmin and lmax − 1 with total width

D−lmin

(

D(n−Dlmin)

D − 1
−Di(lmin)

)

that is, at one point in the algorithm this solution corresponds
to theD(n−Dlmin)/(D−1)−i(lmin) least weighted packages
of width D−lmin . Due to the bounds oni(lmin), this number
of packages is less than the number of packages of the same
width in the optimal nodeset for boundslmin and lmax − 1

10

(with total widthDlmin(n−Dlmin)/(D−1)). Thus an optimal
nodeset to the shortened problem can contain the (shifted-
by-one) original nodeset and must have its maximum length
achieved for all input symbols for which the original nodeset
achieves maximum length.

Thus we can find whetherln = lmax by merely doing pre-
algorithmic bottom-merge Huffman coding (which, whenln 6=
lmax, results in reduced computation). This is useful in finding
a faster algorithm for largelmax − lmin and linearϕ.

VIII. A F ASTER ALGORITHM FOR THEL INEAR PENALTY

A somewhat different reduction, one analogous to the re-
duction of [33], is applicable ifϕ(δ) = δ. This more specific
algorithm has similar space complexity and strictly bettertime
complexity unlesslmax − lmin = O(log n). However, we only
sketch this approach here roughly compared to our previous
explanation of the simpler, more general approach.

Consider again the code tree representation, that using a
D-ary tree to represent the code. A codeword is represented
by successive splits from the root to a leaf — one split for
each output symbol — so that the length of a codeword is
represented by the length of the path to its corresponding
leaf. A vertex that is not a leaf is called aninternal vertex;
each internal vertex of the tree in Fig. 1 is shown as a black
circle. We continue to use dummy variables to ensure that
n mod (D − 1) ≡ 1, and thus an optimal tree hasκ(l) = 1;
equivalently, all internal vertices haveD children. We also
continue to assume without loss of generality that the output
tree is monotonic. An optimal tree given the constraints of
the problem will have no internal vertices at levellmax,
(n − Dlmin)/(D − 1) internal vertices in thelmax − lmin

previous levels, and(Dlmin − 1)/(D− 1) internal vertices —
with no leaves — in the levels above this, if any. The solution
to a linear length-bounded problem can be expressed by the
number of internal vertices in the unknown levels, that is, by

αi , number of internal vertices
in levels [lmax − i, lmax]

(8)

so that we know that

α0 = 0 and αlmax−lmin
=
n−Dlmin

D − 1
.

If the truncated Huffman coding algorithm (as in the pre-
vious section) fails to find a code with allli ≤ lmax, then we
are assured that there exists anli = lmax, so thatαi can be
assumed to be a sequence of strictly increasing integers. A
strictly increasing sequence can be represented by a path ona
different type of graph, a directed acyclic graph with vertices
numbered0 to (n−Dlmin)/(D−1), e.g., the graph of vertices
in Fig. 5. Theith edge of the path begins atαi−1 and ends at
αi, and eachαi represents the number of internal vertices at
and below the corresponding level of the tree according to (8).
Fig. 1 shows a code tree with correspondingαi’s as a count
of internal vertices. The path length is identical to the height
of the corresponding tree, and the path weight is

lmax−lmin
∑

i=1

w(αi−1, αi)

for edge weight functionw, to be determined. Larmore and
Przytycka used such a representation for binary codes [33];
here we use the generalized representation forD-ary codes.

0 21

p2 + p3 + p4 + p5 + p6 + p7

p3 + p4 + p5 + p6 + p7

p5 + p6 + p7

Fig. 5. The directed acyclic graph for codingn = 7, D = 3, lmin = 1,
lmax = ln = 4 (ϕ(δ) = δ)

In order to make this representation correspond to the above
problem, we need a way of making weighted path length
correspond to coding penalty and a way of assuring a one-to-
one correspondence between valid paths and valid monotonic
code trees. First let us define the cumulative probabilities

si ,

n
∑

k=n−i+1

pk

so that there aren+1 possible values forsi, each of which can
be accessed in constant time afterO(n)-time preprocessing.
We then use these values to weigh paths such that

w(α′, α′′) ,

{

s(Dα′′+−α′+), Dα′′+ − α′+ ≤ n
∞, Dα′′+ − α′+ > n

where we recall thatx+ denotesmax(x, 0) and∞ is neces-
sary for cases in which the numbers of internal vertices are
incompatible; this rules out paths not corresponding to valid
trees. Thus path length and penalty are equal, that is,

lmax−lmin
∑

i=1

w(αi−1, αi) =
n

∑

j=1

pj(lj − lmin).

This graph weighting has theconcave Monge propertyor
quadrangle inequality,

w(α′, α′′) + w(α′ + 1, α′′ + 1)
≤ w(α′, α′′ + 1) + w(α′ + 1, α′′)

for all 0 < α′ + 1 < α′′ ≤ (n − Dlmin)/(D − 1), since this
inequality reduces to the already-assumedpn−Dα′′+α′+1−D ≥
pn−Dα′′+α′+2 (where pi , 0 for i > n). Fig. 5 shows
such a graph. A single-edge path corresponds tol =
(1, 2, 2, 2, 2, 2, 2) while the two-edge path corresponds tol =
(1, 1, 2, 2, 3, 3, 3). In practice, only the latter would be under
consideration using the algorithm in question, since the pre-
algorithmic Huffman coding assured thatln = lmax = 3.

Thus, if
k , lmax − lmin

and

n′ , 1 +
n−Dlmin

D − 1

we wish to find the minimumk-link path from 0 to (n −
Dlmin)/(D − 1) on this weighted graph ofn′ vertices. Given
the concave Monge property, ann′2O(

√
log k log log n′)-time

O(n′)-space algorithm for solving this problem is presented
in [18]. Thus the problem in question can be solved in

11

n2O(
√

log(lmax−lmin) log log n)/D time andO(n/D) space —
O(n) space if one counts the pre-algorithmic Huffman coding
and/or necessary reconstruction of the Huffman code or code-
word lengths — an improvement on the Package-Merge-based
approach except fork = O(log n).

IX. EXTENSIONS

One might wonder whether the time complexity of the
aforementioned algorithms is the minimum achievable. Special
cases (e.g.,lmax ≈ logD n for ϕ(δ) = δ, lmin = 0, and
D = 2) can be addressed using modifications of the Package-
Merge approach [36]–[40]. Also,p often implies ranges of
values, obtainable without coding, forl1 and ln. This enables
one to use values oflmin and lmax that result in a significant
improvement, as in [19] forlmin = 0.

An important problem that can be solved with the tech-
niques in this paper is that of finding an optimal code given an
upper bound on fringe, the difference between minimum and
maximum codeword length. One might, for example, wish to
find a fringe-limited prefix code in order to have a near-optimal
code that can be simply implemented with minimal memory
and decompression time, as in Section VIII of [43]. Such a
problem is mentioned in [8, p. 121], where it is suggested that
if there areb−1 codes better than the best code having fringe
at mostd, one can find thisb-best code with theO(bn3)-time
algorithm in [44, pp. 890–891], thus solving the fringe-limited
problem. However, this presumes we know an upper bound
for b before running this algorithm. More importantly, if a
probability vector is far from uniform,b can be very large,
since the number of viable code trees isΘ(1.794 . . .n) [45].
Thus this is a poor approach in general.

Instead, we can use the aforementioned algorithms for find-
ing the optimal length-bounded code with codeword lengths
restricted to[l′ − d, l′] for each l′ ∈ {⌈logD n⌉, ⌈logD n⌉ +
1, . . . , ⌊logD n⌋ + d}, keeping the best of these codes; this
covers all feasible cases of fringe upper bounded byd.
(Here we again assume, without loss of generality, that
n mod (D − 1) ≡ 1.) The overall procedure thus has time
complexity O(nd2) for the general convex quasiarithmetic
case andnd2O(

√
log d log log n)/D when applying the algorithm

of Section VIII to the most common penalty of expected
length; the latter approach is of lower complexity unless
d = O(log n). Both algorithms operate with onlyO(n) space
complexity.

ACKNOWLEDGMENTS

The author wishes to thank Z. Zhang for first bringing a
related problem to his attention and J.D. Morgenthaler for
constructive discussions on this topic.

REFERENCES

[1] C. Dickens,A Christmas Carol. London, UK: Chapman and Hall,
1843, available from http://www.gutenberg.org/etext/46.

[2] A. Rényi, A Diary on Information Theory. New York, NY: John Wiley
& Sons Inc., 1987, original publication:Naplò az inforḿacióelḿeletről,
Gondolat, Budapest, Hungary, 1976.

[3] S. Cass, “Holiday gifts,”IEEE Spectrum, vol. 42, no. 11, pp. 59–68,
Nov. 1994, available from http://www.spectrum.ieee.org/nov05/2133/3.

[4] I. Newton, Opticks. London, UK: Smith and Walford, 1704, available
from http://burndy.mit.edu/Collections/Babson/Online/Opticks.

[5] E. S. Schwartz, “An optimum encoding with minimum longest code and
total number of digits,”Inf. Contr., vol. 7, no. 1, pp. 37–44, Mar. 1964.

[6] A. Moffat and A. Turpin, “On the implementation of minimum redun-
dancy prefix codes,”IEEE Trans. Commun., vol. 45, no. 10, pp. 1200–
1207, Oct. 1997.

[7] I. H. Witten, A. Moffat, and T. Bell,Managing Gigabytes, 2nd ed. San
Francisco, CA: Morgan Kaufmann Publishers, 1999.

[8] J. Abrahams, “Code and parse trees for lossless source encoding,”
Communications in Information and Systems, vol. 1, no. 2, pp. 113–
146, Apr. 2001.

[9] T. C. Hu and A. C. Tucker, “Optimal computer search trees andvariable-
length alphabetic codes,”SIAM J. Appl. Math., vol. 21, no. 4, pp. 514–
532, Dec. 1971.

[10] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[11] B. McMillan, “Two inequalities implied by unique decipherability,” IRE
Trans. Inf. Theory, vol. IT-2, no. 4, pp. 115–116, Dec. 1956.

[12] L. L. Larmore, “Minimum delay codes,”SIAM J. Comput., vol. 18, no. 1,
pp. 82–94, Feb. 1989.

[13] P. A. Humblet, “Generalization of Huffman coding to minimize the
probability of buffer overflow,” IEEE Trans. Inf. Theory, vol. IT-27,
no. 2, pp. 230–232, Mar. 1981.

[14] J. Cheng, S. Dolinar, M. Effros, and R. McEliece, “Data expansion with
Huffman codes,” inProc., 1995 IEEE Int. Symp. on Information Theory,
Sept. 1995, p. 325.

[15] L. L. Larmore and D. S. Hirschberg, “A fast algorithm for optimal
length-limited Huffman codes,”J. ACM, vol. 37, no. 2, pp. 464–473,
Apr. 1990.

[16] A. Itai, “Optimal alphabetic trees,”SIAM J. Comput., vol. 5, no. 1, pp.
9–18, Mar. 1976.

[17] L. Gotlieb and D. Wood, “The construction of optimal multiway search
trees and the monotonicity principle,”Intern. J. Computer Maths, Section
A, vol. 9, no. 1, pp. 17–24, 1981.

[18] B. Schieber, “Computing a minimum-weightk-link path in graphs with
the concave Monge property,”Journal of Algorithms, vol. 29, no. 2, pp.
204–222, Nov. 1998.

[19] M. B. Baer, “Source coding for quasiarithmetic penalties,” IEEE Trans.
Inf. Theory, vol. IT-52, no. 10, pp. 4380–4393, Oct. 2006.

[20] A. De Santis and G. Persiano, “An optimal algorithm for the construction
of optimal prefix codes with given fringe,” inProc., IEEE Data
Compression Conf., Apr. 8–11, 1991, pp. 297–306.

[21] C. Chang and J. Thomas, “Huffman algebras for independentrandom
variables,” Disc. Event Dynamic Syst., vol. 4, no. 1, pp. 23–40, Feb.
1994.

[22] A. M. Garsia and M. L. Wachs, “A new algorithm for minimum cost
binary trees,”SIAM J. Comput., vol. 6, no. 4, pp. 622–642, Dec. 1977.

[23] T. C. Hu, D. J. Kleitman, and J. K. Tamaki, “Binary trees optimum under
various criteria,”SIAM J. Appl. Math., vol. 37, no. 2, pp. 246–256, Apr.
1979.

[24] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, 1st ed. Reading, MA: Addison-Wesley, 1973.

[25] T. C. Hu and J. D. Morgenthaler, “Optimum alphabetic binary trees,” in
Combinatorics and Computer Science, ser. Lecture Notes in Computer
Science, vol. 1120. Springer-Verlag, Aug. 1996, pp. 234–243.

[26] T. C. Hu, L. L. Larmore, and J. D. Morgenthaler, “Optimal integer alpha-
betic trees in linear time,” inProc. 13th Annual European Symposium
on Algorithms. Springer-Verlag, Oct. 2005, pp. 226–237.

[27] D. E. Knuth, “Optimum binary search trees,”Acta Informatica, vol. 1,
pp. 14–25, 1971.

[28] T. C. Hu and K. C. Tan, “Path length of binary search trees,” SIAM J.
Appl. Math., vol. 22, no. 2, pp. 225–234, Mar. 1972.

[29] M. R. Garey, “Optimal binary search trees with restricted maximal
depth,” SIAM J. Comput., vol. 3, no. 2, pp. 101–110, June 1974.

[30] S.-L. Chan and M. J. Golin, “A dynamic programming algorithm for
constructing optimal “1”-ended binary prefix-free codes,”IEEE Trans.
Inf. Theory, vol. IT-46, no. 4, pp. 1637–1644, July 2000.

[31] M. J. Golin and G. Rote, “A dynamic programming algorithm for
constructing optimal prefix-free codes for unequal letter costs,” IEEE
Trans. Inf. Theory, vol. IT-44, no. 5, pp. 1770–1781, Sept. 1998.

[32] L. L. Larmore and T. M. Przytycka, “A fast algorithm for optimal height-
limited alphabetic binary-trees,”SIAM J. Comput., vol. 23, no. 6, pp.
1283–1312, Dec. 1994.

[33] ——, “Parallel construction of trees with optimal weighted path length,”
in Proc. 3nd Annual Symposium on Parallel Algorithms and Architec-
tures, 1991, pp. 71–80.

12

[34] T. M. Cover and J. A. Thomas,Elements of Information Theory, 1st ed.
New York, NY: Wiley-Interscience, 1991.

[35] J. van Leeuwen, “On the construction of Huffman trees,” in Proc. 3rd
Int. Colloquium on Automata, Languages, and Programming, July 1976,
pp. 382–410.

[36] J. Katajainen, A. Moffat, and A. Turpin, “A fast and space-economical
algorithm for length-limited coding,” inProc., Int. Symp. on Algorithms
and Computation, Dec. 1995, p. 1221.

[37] M. Liddell and A. Moffat, “Incremental calculation of optimal length-
restricted codes,” inProc., IEEE Data Compression Conf., Apr. 2–4,
2002, pp. 182–191.

[38] A. Moffat, A. Turpin, and J. Katajainen, “Space-efficient construction
of optimal prefix codes,” inProc., IEEE Data Compression Conf., Mar.
28–30, 1995, pp. 192–202.

[39] A. Turpin and A. Moffat, “Practical length-limited coding for large
alphabets,”The Comput. J., vol. 38, no. 5, pp. 339–347, 1995.

[40] ——, “Efficient implementation of the package-merge paradigm for
generating length-limited codes,” inProc., Computing: The Australasian
Theory Symposium, Jan. 29–30, 1996, pp. 187–195.

[41] R. M. Capocelli and A. De Santis, “A note onD-ary Huffman codes,”
IEEE Trans. Inf. Theory, vol. IT-37, no. 1, pp. 174–179, Jan. 1991.

[42] I. Tomescu, “Optimum Huffman forests,”J. Universal Comput. Sci.,
vol. 3, no. 7, pp. 813–820, July 1997.

[43] M. Khosravifard, H. Saidi, M. Esmaeili, and T. A. Gulliver, “The
minimum average code for finite memoryless monotone sources,”IEEE
Trans. Inf. Theory, vol. IT-53, no. 3, pp. 955–975, Mar. 2007.

[44] S. Anily and R. Hassin, “Ranking the best binary trees,”SIAM J.
Comput., vol. 18, no. 5, pp. 882–892, Oct. 1989.

[45] D. W. Boyd, “The asymptotic number of solutions of a diophantine
equation from coding theory,”J. Comb. Theory, Ser. A, vol. 18, no. 2,
pp. 210–215, Mar. 1975.

