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Abstract— A method is presented for constructing a Tunstall
code that is linear time in the number of output items. This isan
improvement on the state of the art for non-Bernoulli sources,
including Markov sources, which use a suboptimal generalization
of Tunstall’s algorithm proposed by Savari and analytically
examined by Tabus and Rissanen. In general, ifn is the total
number of output leaves across all Tunstall trees,s is the number
of trees (states), andD is the number of leaves of each internal
node, then this method takesO((1+(log s)/D)n) time and O(n)
space.

I. I NTRODUCTION

Although not as well known as Huffman’s optimal fixed-to-
variable-length coding method, the optimal variable-to-fixed-
length coding technique proposed by Tunstall [1] offers an
alternative method of block coding. In this case, the input
blocks are variable in size and the output size is fixed, rather
than vice versa. Consider a variable-to-fixed-length code for an
independent, identically distributed (i.i.d.) sequence of random
variables{Xk}, where, without loss of generality, Pr[Xk =
i] = pi for i ∈ X , {0, 1, . . . , D− 1}. The outputs arem-ary
blocks of sizen = mν for integersm — most commonly2
— andν, so that the output alphabet can be considered with
an indexj ∈ Y , {0, 1, . . . , n− 1}.
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Fig. 1. Ternary-input3-bit-output Tunstall tree

Codewords have the formX ∗, so that the code is aD-ary
prefix code, suggesting the use of a coding tree. Unlike the
Huffman tree, in this case the inputs are the codewords and the
outputs the indices, rather than the reverse; it thus parsesthe
input and is known as aparsing tree. For example, consider
the first two symbols of a ternary data stream to be parsed and
coded using the tree in Fig. 1. If the first symbol is a0, the
first index is used, that is, bits000 are encoded. If the first
symbol is not a0, the first two ternary symbols are represented

as a single index —001, 010, etc. So, for example, if Fig. 1
is the (ternary) coding tree, then an input of12100 would first
have12 parsed, coded into binary011; then have10 parsed,
coded into binary001; then have0 parsed, coded into binary
000, for an encoded output bitstream of011001000.

If Xk is i.i.d., then the probability oflj-symbol codeword
c(j) = c1(j) · c2(j) · c3(j) · · · clj (j) is rj = Pr[Xlj = j] =∏lj

k=1 rck(j). Internal nodes thus have probability equal to
the product of their corresponding events. An optimal tree
will be that which maximizes expected compression ratio, the
numbers of input bits divided by output bits. The number
of input symbols per parse islj symbols ((log2 D)lj bits),
depending onj, while the number of output bits will always
be log2 n. Thus the expected ratio to maximize is:

n−1∑

j=0

rj

(log2 D)lj
log2 n

= (logn D)

n−1∑

j=0

rj lj (1)

where the constant to the left of the right summation term can
be ignored, leaving expected input parse length as the value
to maximize.

Because probabilities are fully known ahead of time, if we
start with an optimal (or one-item) tree, the nature of any
split of a leaf into other leaves, leading to a new tree with
one more output item, is fully determined by the leaf we
choose to split. Since splitting increases expected length(the
value to maximize) by the probability of the node split, we
should split the most probable node at each step, starting with
a null tree, until we get to ann-item tree. Splitting one node
does not affect the benefit value of splitting nodes that are
not its descendents. This greedy, inductive splitting approach
is Tunstall’s optimal algorithm. Note that, because the output
symbol is of fixed length, codeword probabilities should be as
uniform as possible, which Tunstall’s algorithm accomplishes
via always splitting the most probable item into leaves, oneof
which will be the least probable item in the subsequent tree.

Tunstall’s technique stops just beforen leaves are exceeded
in the tree; this might have less thann leaves as in Fig. 1 for
n = 8. The optimal algorithm necessarily has unused codes
in such cases, due to the fixed-length nature of the output.
Markov sources can be parsed using a parameterized gener-
alization of the approach where the parameter is determined
from the Markov process, independent of code size, prior to



building the tree [2], [3].
Analyses of the performance of Tunstall’s technique are

prevalent in the literature [4], [5], but perhaps the most
obvious advantage to Tunstall codes is that of being randomly
accessible [5]: Each output block can be decoded without
having to decode any prior block. This not only aids in
randomly accessing portions of the compression sequence, but
also in synchronization: Because the size of output blocks is
fixed, simple symbol errors do not propagate beyond the set
of input symbols a given output block represents. Huffman
codes and variable-to-variable-length codes (e.g., thosein [6])
do not share this property.

However, although much effort has been expended in the
analysis of Tunstall codes and codec implementation, until
recently few have analyzed the complexity of generating such
codes. The algorithm itself, in building a tree element by
element, would beO(n2) time given a naı̈ve implementation
or O(n log n) time using a single priority queue. Since binary
output blocks are of size⌈log2 n⌉, this is somewhat limiting.
However, recently two independent works [7], [8] showed that
new algorithms based on that of Tunstall (and Khodak [9])
could derive an optimal code in sublinear time (in the number
of output items) given a Bernoulli (i.i.d. binary) input random
variable.

Hoever, many input sources are not binary and many are
not i.i.d.; indeed, many are not even memoryless. A more
general linear-time algorithm would thus be of use. Even in
the binary case, these algorithms have certain drawbacks in
the control of the construction of the optimal parsing tree.As
in Tunstall coding, this parsing tree grows in size, meaning
that a sublinear algorithm must “skip” certain trees, and the
resulting tree is optimal for somen′ which might not be the
desiredn. To grow the resulting tree to that of appropriate
size, one can revert to Tunstall’s tree-growing steps, meaning
that they are — and their implementation is — still relevant
in finding an optimal binary tree.

Here we present a realization of the original Tunstall
algorithm that is linear time with respect to the number
of output symbols. This simple algorithm can be expanded
to extend to nonidentically distributed and (suboptimally) to
Markov sources. Because such sources need multiple codes
for different contexts, the time and space requirements forthe
algorithm are greater for such sources, although not prohibitive
and still linear with the size of the output. Specifically, if
we have a source withs states, then we need to builds D-
ary trees. If thetotal number of output leaves isn, then the
algorithm presented here takesO((1+ (log s)/D)n) time and
O(n) space. (This reasonably assumes thatg ≤ O(n), where
g is the number of possible triples of conditional probabilities,
tree states, and node states; e.g.,g = 2 for Bernoulli sources
andg ≤ Ds2 for any Markov input.)

II. L INEAR-TIME BERNOULLI ALGORITHM

The method of implementing Tunstall’s algorithm intro-
duced here is somewhat similar to two-queue Huffman coding
[10], which is linear time given sorted probabilities. The

Linear-time binary Tunstall code generation

1) Initialize two empty regular queues:
←−
Q for left children

and
−→
Q for right children. These queues will need to hold

at mostn items altogether.
2) Split the root (probability1) node with the left child

going into
←−
Q and the right child going into

−→
Q . Assign

tree sizez ← 2.
3) Move the item with the highest (overall) probability out

of its queue. The node this represents is split into its
two children, and these children are enqueued into their
respective queues.

4) Increment tree size by1, i.e., z ← z + 1; if z < n, go
to Step 3; otherwise, end.

Fig. 2. Steps for linear-time binary Tunstall code generation

Huffman two-queue algorithm proceeds with the observation
that nodes aremerged in ascending order of their overall total
probability. Thus a queue can be used for these combined
nodes which, together with a second queue for uncombined
nodes, assures that the smallest remaining node can be de-
queued in constant time from the head of one of these two
queues.

In Tunstall coding, leaves aresplit in descending order.
Consider a node with probabilityq split into two nodes: a
left node of probabilityaq and a right node of probability
(1 − a)q. Because every prior split node had probability not
exceedingq, the left child will have no larger a probability
than any previously created left child, and the right child will
have no larger a probability than any previously created right
child. Thus, given a Bernoulli input, it is sufficient to use
two queues to have a linear-time algorithm for computing the
optimal Tunstall code, as in Fig. 2.

Example 1: Consider the simple example of coding a
Bernoulli(0.7) input using a two-bit (four-leaf) tree, illustrated
in Fig. 3. Initially (Fig. 3a), the “left” queue has the left child
of the root, of probability0.7, and the “right” queue has the
right child, of probability0.3. Since0.7 is larger, the left node
is taken out and split into two nodes: the0.49 node in the left
queue and the0.21 node in the right queue (Fig. 3b). The0.49
node follows (being larger than the0.3 node and thus all other
nodes), leaving leaves of probability0.343 (last to be inserted
into the left queue, corresponding to input000), 0.147 (last in
the right queue, input001), 0.21 (input 01) and0.3 (input 1)
(Fig. 3c). The value maximized, compression ratio (1), is

(log4 2)
3∑

j=0

rili =
219

200
= 1.095.

As with Huffman coding, allowing larger blocks of data gener-
ally improves performance, asymptotically achieving entropy;
related properties are explored in [11].

As previously indicated, there are faster methods to build
optimal trees for Bernoulli sources. However, these sublinear-
time methods do not directly result in an optimal representa-
tion of a given size, instead resulting in one for a (perhaps
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Fig. 3. Example of binary Tunstall coding using two queues

different) output alphabet size not exceedingn. Any method
that achieves a smaller optimal tree more quickly can therefore
achieve an optimaln-leaf tree more quickly using the method
introduced here.

III. FAST GENERALIZED ALGORITHM

This method of executing Tunstall’s algorithm is structured
in such a way that it easily generalizes to sources that are
not binary, are noti.i.d., or are neither. If a source is not
i.i.d., however, there is state due to, for example, the nature
or the quantity of prior input. Thus each possible state needs
its own parsing tree. Since the size of the output set of trees
is proportional to the total number of leaves, in this casen
denotes the total number of leaves.

In the case of sources with memory, a straightforward
extension of Tunstall coding might not be optimal [12]. Indeed,
the optimal parsing for any given point should depend on its
state, resulting in multiple parsing trees. Instead of splitting
the node with maximum probability, ageneralized Tunstall
policy splits according to the node maximizing some (constant-
time-computable)fj,k(p

(j)
i ) across all parsing trees, wherej

indexes the beginning state (the parse tree) andk indexes the
state corresponding to the node;p

(j)
i is the probability of the

ith leaf of thejth tree, conditional on this tree. Everyfj,k(p)

is decreasing inp = p
(j)
i , the probability corresponding to the

node in treej to be split. This generalization generally gives
suboptimal but useful codes; in the case ofi.i.d. sources, it
achieves an optimal code usingfj,k(p) = − ln p, where ln
is the natural logarithm. The functionsfj,k are yielded by
preprocessing which we will not count as part of the algorithm

time cost, being independent ofn. In this casen, the size of
the output, is actually the number of total leaves in the output
set of trees, not the number in any given tree. These functions
are chosen for coding that is, in some sense, asymptotically
optimal [3].

ConsiderD-ary coding withn outputs andg equivalent out-
put results in terms of states and probabilities — e.g.,g = 3 for
i.i.d. input probability mass function(0.5, 0.2, 0.2, 0.1), since
events all have probability in theg-member set{0.5, 0.2, 0.1}.
If the source is memoryless, we always haveg ≤ D. A more
complex example might haveD different output values with
different probabilities withs input states ands output states,
leading tog = Ds2. Then a straightforward extension of the
approach, usingg queues, would split the minimum-f node
among the nodes at the heads of theg queues. This would take
O(n) space andO((s + g/D)n) time per tree, since there are
⌈(n−1)/(D−1)⌉ steps withg looks (for minimum-fj,k nodes,
only one of which is dequeued) andD enqueues as a result of
the split of a node intoD children. (Probabilities in each of
the multiple parsing trees are conditioned on the state at the
time the root is encountered.)

However, g could be large, especially ifs is large. We
can instead use anO(log g)-time priority queue structure —
e.g., a heap — to keep track of the leaves with the smallest
values off . Such a priority queue contains up tog pointers to
queues; these pointers are reordered after each node split from
smallest to largest according to priorityfj,k(p

(j)
∗ ), the value

of the function for the item at the head of the corresponding
regular queue. (Priority queue insertions can occur anywhere



Efficient coding method for generalized Tunstall policy
1) Initialize empty regular queues{Qt} indexed by allg

possible combinations of conditional probability, tree
state, and node state; denote a given triplet of these
as t = (p′, j, k). These queues, which are not priority
queues, will need to hold at mostn items (nodes)
altogether. Initialize an additional empty priority queue
P which can hold up tog pointers to these regular
queues.

2) Split the root (probability1) node amongD regular
queues according to(p′, j, k). Similarly, initialize the
priority queue to point to those regular queues which
are not empty, in an order according to the correspond-
ing fj,k. Assign tree sizez ← D.

3) Move the item at the head ofQP0
— the queue pointed

to be the headP0 of the priority queue — out of its
queue; it has the lowestf and is thus the node to split.
, QP0

, which is pointed to byP0, the top item of
the priority queueP . Its D children are distributed
according tot to their respective queues. Then,P0 is
removed from the priority queue, and, if any of the
aforementioned children were inserted into previously
empty queues, pointers to these queues are inserted into
the priority queue.P0, if QP0

remains nonempty, is also
reinserted into the priority queue according tof for the
item now at the head of its associated queue.

4) Increment tree size byD − 1, i.e., z ← z + D − 1. If
z ≤ n−D + 1, go to Step 3; otherwise, end.

Fig. 4. Steps for efficient coding using a generalized Tunstall policy

within the queue that keeps items in the queue sorted by
priorities set upon insertion. Removal of the smallestf and
inserts of arbitraryf generally takeO(log g) amortized time in
common implementations [13, section 5.2.3], although some
have constant-time inserts [14].) The algorithm — taking
O((1 + (log s)/D)n) time andO(n) space per tree, as ex-
plained below — is thus as described in Fig. 4.

As with the binary method, this splits the most preferred
node during each iteration of the loop, thus implementing the
generalized Tunstall algorithm. The number of splits is⌈(n−
1)/(D−1)⌉ and each split takesO(D+log g) time amortized.
The D factor comes from theD insertions into (along with
one removal from) regular queues, while thelog g factor comes
from one amortized priority queue insertion and one removal
per split node. While each split takes an item out of the priority
queue, as in the example below, it does not necessarily return
it to the priority queue in the same iteration. Nevertheless,
every priority queue insert must be one of either a pointer to
a queue that had been previously removed from the priority
queue (which we amortize to the removal step) or a pointer to
a queue that had previously never been in the priority queue
(which can be considered an initialization). The latter steps
— the only ones that we have left unaccounted — number
no more thang, each taking no more thanlog g time, so,

under the reasonable assumption thatg log g ≤ O(n), these
initialization steps do not dominate. (If we use a priority queue
implementation with constant amortized insert time, such as
a Fibonacci heap [14], this sufficient condition becomesg ≤
O(n).)

We thus have anO((1+(log g)/D)n)-time method (O((1+
(log s)/D)n) in terms of n, s, and D, since g ≤ Ds2)
using onlyO(n) space to store the tree and queue data. The
significant space users are the output trees (O(n) space); the
queues (g queues which never have more items in them total
than there are tree nodes, resulting inO(n) space); and the
priority queue (O(g) space).

Example 2: Consider an example with three inputs —0, 1,
and2 — and two states —1 and2, according to the Markov
chain shown in Fig. 5. State1 always goes to state2 with
input symbols of probabilityp(1)

0 = 0.4, p
(1)
1 = 0.3, and

p
(1)
2 = 0.3. For state2, the most probable output,p(2)

0 = 0.5,
results in no state change, while the others,p

(2)
1 = 0.25 and

p
(2)
2 = 0.25, result in a change back to state1. Because

there are2 trees and each of2 states has2 distinct output
probability/transition pairs, we needg = 2× 2× 2 queues, as
well as a priority queue that can point to that many queues. Let
f1,1(p) = f2,2(p) = − ln p, f1,2(p) = −0.0462158− lnp, and
f2,1(p) = 0.0462158−lnp, where the decimal is approximate.

The fifth split in using this method to build an optimal
coding tree is illustrated by the change from the left-hand
side to the right-hand side of Fig. 5. The first two splitting
steps split the two respective root nodes, the third splits the
probability 0.5 node, and the fourth splits the probability0.4
node.

At this point, the priority queue contains pointers to five
queues. (The order of equiprobable sibling items with the same
output state does not matter for optimality, but can affect the
output; for the purposes of this example, they are inserted into
each queue from left to right.) In this example we denote these
node queues by the conditional probability of the nodes and the
tree the node is in. For example, the first queue,Q

(1)
0.5, is that

associated with any node that is in the first tree and represents
a transition from state2 to state2 (that of probability0.5).

Before the step under examination, the queue that is pointed
to by the head of the priority queue is the first-tree queue
of items with conditional probability0.3 (i.e., QP0

= Q
(1)
0.3)

and tree probabilityp = 0.3. Thus the node to split is
that at the head of this queue, which has lowestf value
f1,2(p) = 1.1578 . . .. This item is removed from the priority
queue, the head of the queue it points to is also dequeued,
and the corresponding node in the first tree is given its three
children. These children are queued into the appropriate queue:
For the most probable item — probability0.15, conditional
probability 0.5 — is queued intoQ(1)

0.5, while the two items
both having probability0.075 and conditional probability0.25

are queued intoQ(1)
0.25. Finally, because the removed queue was

not empty, it is reinserted into the priority queue according to
the priority value of its head, stillf1,2(0.3) = 1.1578 . . .. No
other queue needs to be reinserted since none of the new nodes
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Fig. 5. Example of efficient generalized Tunstall coding forMarkov chain (top-center) shown before (left) and after (right) the fifth split node. Right arrow
denotes right-most leaf and underscore denotes center subtree (to distinguish items);fj,k denotes priority function.

entered a queue that was empty before the step. In this case,
then, the priority queue is unchanged, and the queues and trees
have the states given in right-hand side.
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