
1

On Conditional Branches in Optimal Search Trees
Michael B. Baer,Member, IEEE

Abstract

A commonly used type of search tree is the alphabetic binary tree, which uses (without loss of generality)
“less than” versus “greater than or equal to” tests in order to determine the outcome event. The process of finding
an optimal alphabetic binary tree for a known probability distribution on outcome events usually has the underlying
assumption that the cost (time) per comparison is uniform and thus independent of the outcome of the comparison.
This assumption, however, is incorrect in the case of software to be optimized for a given microprocessor, e.g.,
compiling switch statements or fine-tuning program bottlenecks. Branch prediction causes the cost for the more
likely comparison outcome to be less — often far less — than for the less likely comparison outcome. Here we
introduce a variety of novel dynamic programming algorithms to solve both such alphabetic binary tree problems
and more general search tree problems, optimizing for the behavior of processors with predictive branch capabilities,
both static and dynamic. Entropy-based performance boundscan be used to quickly estimate performance of optimal
alphabetic binary trees. Solutions found using these methods are often faster in practice than “optimal” search trees
as formulated in the literature.

Index Terms

Branch prediction, graph and tree search strategies, optimal alphabetic tree.

I. INTRODUCTION

Consider a problem of assigning grades to tests. These testsmight be administered to humans or to
objects, but in either case there are grades1 throughn — n being5 in most academic systems — and the
corresponding probabilities of each grade,p(1) throughp(n), can be assumed to be known; if unknown,
they are assumed to be identical. Each grade is determined bytaking the actual score,a; dividing it by
the maximum possible score,b; and seeing which ofn distinct fixed intervals of the form[vi−1, vi) the
key (ratio) a/b lies in, wherev0 = −∞ and vn = +∞. This process is repeated for different values of
a and b enough times that it is worthwhile to consider the fastest manner in which to determine these
grades (or, in general, “items”).

A straightforward manner of assigning scores would be to multiply (or shift) a by a constantk (log2 k),
divide this by b, and use lookup tables on the scaled ratio. However, division is a slow step in most
CPUs — and not even a native operation in others — and a lookup table, if large, can take up valuable
cache space. The latter problem can be solved by using a numerical comparisons to determine the score,
resulting in a type of search tree known as abinary decision treeof an alphabetic binary tree. In fact,
with this decision tree, we can eliminate division altogether; instead of comparing scaled ratioka/b with
grade cutoff value,vi, we can equivalently compareka with bvi, replacing the slow division of variable
integers with a fast multiplication of a variable and a fixed integer. Depending on the application, this
can be useful even ifb = 1 and no division is inherent in the problem. The only matter that remains is
determining the structure of the decision tree.

Such trees have a large variety of applications, including nontechnical uses, such as the game of Twenty
Questions [1, pp. 94–95] (also known as “Yes and No” [2] or “Bar-kochba” [3]). Technical uses includes
the compilation of switch (case) statements [4], [5]. An optimized binary decision tree is known as an
optimal alphabetic binary tree.

The author is with Ocarina Networks, Inc., 42 Airport Parkway, San Jose, CA 95110-1009 USA (e-mail:icalbear@1̇eee.org).
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version

may no longer be accessible.

2

if (V >= 34) A. compare V, 34
B. branch to M if V<34

if (V >= 42) C. compare V, 42
D. branch to K if V<42

if (V >= 65) E. compare V, 65
F. branch to I if V<65

P = 1; G. P = 1
else H. go to N
P = 2; I. P = 2

else J. go to N
P = 3; K. P = 3

else L. go to N
P = 4; M. P = 4

N. end

Fig. 1. Steps in a simple decision tree

Often times these decision trees are hard coded into software for the sake of efficiency, as in the high-
speed low-memory ONE-SHIFT Huffman decoding technique introduced in [6] and illustrated using C
code in Fig. 2 of the same paper. A shorter but similar decision tree is illustrated in Fig. 1 above by
means of C and assembly-like pseudocode. We discuss this sample tree in Section II of this paper, where
a pictorial representation of the tree is given as Fig. 2.

Algorithms used for finding such trees generally find trees with minimum expected path length, or,
equivalently, minimum expected number of comparisons [7]–[9]. We, however, want a tree that results
in minimum expected run time, which is generally expressed in terms of machine cycles, since these are
usually constant time for a given machine in a given mode. Thegeneral assumption in finding an optimal
decision tree is that these goals are identical, that is, that each decision tree (edge) takes the same amount
of time (cost) as any other; this is noted in Section 6.2.2 of Knuth’s The Art of Computer Programming
[10, p. 429]. In exercise 33 of Section 6.2.2, however, it is conceded that this is not strictly true; in the
first edition, the exercise asks for an algorithm for where there is an inequity in cost between a fixed cost
for a left branch and a fixed cost for a right branch [11], and, in the second edition, a reference is given
to such an algorithm [12]. Such an approach has been extendedto cases where each node has a possibly
different, but still fixed, asymmetry [13].

In practice the asymmetry of branches in a microprocessor isdifferent in character from any of the
aforementioned formulations. On complex CPUs, such as those in the Pentium family, branches are
predicted as taken or untaken ahead of execution. If the branch is predicted correctly, operation continues
smoothly and the branch itself takes only the equivalent of one or two other instructions, as instructions
that would have been delayed by waiting for the branch outcome are instead speculatively executed.
However, if the branch is improperly predicted, a penalty for misprediction is incurred, as the results
of speculatively executed instructions must be discarded and the processor returned to the state it was
at prior to the branch, ready to fetch the correct instruction stream [14]. In the case of the Pentium 4
processor, a mispredicted branch takes the equivalent of dozens of instructions [15]. This penalty has only
increased with the deeper pipelines of more recent processors. While this time penalty pales in comparison
to time taken by division — over a hundred adds and shifts can take place in the time it takes to do
one 32-bit division on Pentium-family processors — it certainly reveals comparison tally as being a poor
approximation to run time, the ideal minimization.

In this paper, we discuss the construction of alphabetic binary trees — and more general search trees
— which are optimized with respect to the behavior of conditional branches in microprocessors. We
introduce a general dynamic programming approach, one applicable to such architecture families as

3

the Intel Pentium architectures, which use advanced dynamic branch prediction; ARM Limited’s ARM
architectures, most instances of which use static branch prediction; and Knuth’s MMIX architecture, in
which branch instructions explicitly “hint” whether or notthe corresponding branches are assumed taken
or untaken [16, p. 20]. The first two of these are not only representative of two styles of branch prediction;
they are also by far the most popular processor architecturefamilies for 32-bit personal computers and
32-bit embedded applications, respectively. Pentium designs and the XScale [17] — which is viewed as
the successor to ARM architecture StrongARM — use dynamic prediction. ARM architectures such as
those of the ARM7 and ARM9 families use static branch prediction [18]. Such processors are used for
mobile devices such as cell phones and iPods. Some other ARM family processors use no prediction;
that is, they speculatively execute instruction by always assuming that branches are untaken. Some more
recent ARM processors — like the ARM1176JZF-S, the processor underlying the Apple iPhone — use
dynamic branch prediction by default, but have modes for static branch prediction and for no branch
prediction [19].

Because the approach introduced here is more general than extant alphabetical dynamic programming
methods, using it to find optimal decision trees is somewhat slower, havingO(n3)-time O(n2)-space
performance. This generality allows for different costs (run times) for different comparisons due to such
behaviors as dynamic branch prediction and the use of conditional instructions other than branches. In the
simplest case of static branch prediction, entropy-based performance bounds are obtained based on known
results from related unequal edge-cost problems. These results can be extended to cases of dynamic branch
prediction. It should be emphasized that the one-timeO(n3)-time O(n2)-space cost of optimization of
these (usually small) problems is dwarfed by even the slightest gain in repeated run-time performance.
The main contribution is thus a method by which decision trees can be coded on known hardware in
order to have minimum expected execution time.

II. NO PREDICTION AND STATIC PREDICTION

Consider Knuth’s pedagogical MMIX architecture [16], which has a simple rule for branching: If a
“hint” indicates that a branch should be taken, a taken branch will take fewer cycles; otherwise, an untaken
branch will take fewer cycles. Thus, if we know ahead of time which branch is more likely and which
less likely, we can hard code the more likely branch to take1 + c clock cycles and the less likely branch
to take3 + c clock cycles, wherec represents the time taken by instructions other than the branch itself,
e.g., multiplications, additions, comparisons.

It is easy to code asymmetric branch biases for such hint-based architectures, for no branch prediction,
and for static branch prediction. In static prediction, opcode or branch direction is used to determine
whether or not a branch is presumed taken, the most common rule being that forward conditional branches
are presumed taken and backward conditional branches are presumed not taken [14]. If the presumption
is satisfied, the branch takes a fixed number of cycles, while,if it is not, it takes a greater fixed number
of cycles. Assume, for example, that we want to use a forward branch, which is assumed not to be taken.
We thus want the less likely outcome to be the costlier one, that the branch is taken: If it is less likely
than not that the item is less thanvi, the branch instruction should correspond to “branch if less thanvi,”
as in all branches used in Fig. 1.

This branching problem, applicable to problems with either no true branch prediction or static branch
prediction, considers positive weightsc0 and c1 such that the cost of a binary path with predictability
b1b2 · · · bk is

∑k
j=1 cbj

, wherebj = 0 if the jth of k comparisons is mispredicted andbj = 1 otherwise.
Such tree paths are often pictorially illustrated via edge length on the corresponding tree, so that path
depth corresponds to path cost, as in Fig. 2. This tree corresponds to the C and pseudocode of Fig. 1.
The overall expected cost (time) to minimize is

Tp,c(b) ,

n
∑

i=1

p(i)

l(i)
∑

j=1

cbj(i)

4

p(1)

p(2)

p(3)

p(4)

1

1

1
3

3

3

b 1
(1

)
=

0

b1(2) = b1(3) = b1(4) = 1

b 2
(2

)
=

0

b2(3) = b2(4) = 1

b 3
(3

)
=

0

b3(4) = 1

Fig. 2. An optimal branch tree with edge costs forc = (c0, c1) = (3, 1)

wherep(i) is the probability of theith item, l(i) is the number of comparisons needed, andbj(i) is 0 if
the result of thejth branch for itemi is contrary to the prediction and1 otherwise.

More formally,

Given p = (p(1), p(2), . . . , p(n)), p(i) > 0,
∑n

i=1 p(i) = 1;
c0, c1 ∈ R+ such thatc0 ≥ c1;

find B, a full binary tree;
b, an assignment of costs to edges ofB such that each nonleaf is connected
to its children by edges, one with costc0, and the other with costc1;

minimizing Tp,c(b) ,
∑n

i=1 p(i)
∑l(i)

j=1 cbj(i);
where thejth edge along the path from root toith leaf is assigned costcbj(i);

the number of edges on the path from root toith leaf is l(i).

Sample representations are shown in Fig. 2 and Fig. 4, the former being labeled with the values of
bj(i). Again, to emphasize the total cost in this pictorial representation, edges are portrayed with depth
proportional to their cost. The cost (and thus pictorial depth) of leaf 3 in Fig. 2 is, for example,

l(3)
∑

j=1

cbj(3) = cb1(3) + cb2(3) + cb3(3)

= c1 + c1 + c0 = 1 + 1 + 3 = 5.

Table I gives the context for this branching problem among other binary tree optimization problems.
These other problems are referred to as in the survey paper [20]. In most problem formulations, edge cost
is fixed, and, where it is not fixed, edges generally have costsaccording to their order, i.e., a left edge has
cost c0 and a right edge has costc1. Relaxing this edge-order constraint in the unequal-cost alphabetic
problem results in the branching problem we are now considering. Relaxing the alphabetic constraint from
either the original alphabetic problem or the branching problem leads to Karp’s nonalphabetic (coding)
problem; since output items in Karp’s problem need not be in agiven (e.g., alphabetical) order, the tree
optimal for the ordered-edge nonalphabetic problem is alsooptimal for the unordered-edge nonalphabetic
problem.

Thus the costT Karp for the optimal tree under Karp’s formulation — also called the lopsided tree
problem— is a lower bound on the cost of the optimal branch tree, whereas the costT Itai for the optimal
tree under Itai’s (alphabetic) formulation is an upper bound on the cost of the optimal branch tree. This
enables the use of bounds in [21] — including the lower bound originally formulated in [22] — for
the branching problem. Specifically, ifbopt is the optimal branching function andT opt = Tp,c(b

opt) the
associated cost for the optimal tree, then

H(p)

d
[22]
≤ T Karp ≤ T opt ≤ T Itai [21]

≤

H(p) + 1

d
+ max {c0, c1}

5

restriction on edge order and/or cost

restriction on output order Constant edge cost Fixed edge-cost order Unrestricted edge-cost order

Alphabetic Hu-Tucker [8]–[10], [23] Itai [12], [13] branching problem

Nonalphabetic Huffman [24]–[26] Karp [27]–[29]

TABLE I

TYPES OF DECISION TREE PROBLEMS

whereH is the entropy functionH(p) = −∑

i p(i)log2p(i) andd satisfies2−dc0 +2−dc1 = 1. If ρ = c0/c1

andx is the sole positive root ofxρ +x−1 = 0, thend = −c−1
1 log2x. Thus, for example, whenc = (3, 1),

x =
3

√

1

2
+

√

31

108
− 3

√

−1

2
+

√

31

108

so d = log2x
−1 ≈ 0.5515 and

T opt ∈ [(1.813 . . .)H(p), (1.813 . . .)H(p) + 4.813 . . .].

When c = (2, 1), x = 1/φ so d = log2φ, whereφ is the golden ratio,φ = (
√

5 + 1)/2. These bounds
can be used to estimate optimal performance and determine — in O(n) time — whether or not to use a
decision tree when it is one of multiple implementation choices.

The key to constructing an optimizing algorithm is to note that any optimal branching tree must have all
its subtrees optimal; otherwise one could substitute an optimal subtree for a suboptimal subtree, resulting
in a strict improvement in the result. The branching problemis thus, to use the terminology of [30],
subtree optimal. Each tree (and subtree) can be defined by itssplitting points. A splitting point beings
for the root of the tree means that all items (grades) afters and includings are in the right subtree while
all items befores are in the left subtree, as per the convention in [7], [10], [23] (and contrary to that in
[12]). Since there aren−1 possible splitting points for the root, if we know all potential optimal subtrees
(of sizes1 throughn − 1) for all possible ranges, the splitting point can be found through sequential
search of the possible combinations. The optimal tree is thus found through dynamic programming, and
this approach hasO(n3) time complexity andO(n2) space complexity, in a similar manner to [23].

The dynamic programming algorithm is relatively straightforward. Each possible optimal subtree for
items i throughj has an associated cost,c(i, j) and an associated probabilityp(i, j); at the end,p(1, n)
is 1, andc(1, n) is the expected cost (run time) of the optimal tree.

The base case and recurrence relation we use are similar to those of [12]. Given unequal branch costs
c0 and c1 and probability mass functionp(·) for 1 throughn,

c(i, i) = 0
c′(i, j) = mins∈(i,j]{c0p(i, s − 1) + c1p(s, j) + c(i, s − 1) + c(s, j)}
c′′(i, j) = mins∈(i,j]{c1p(i, s − 1) + c0p(s, j) + c(i, s − 1) + c(s, j)}
c(i, j) = min {c′(i, j), c′′(i, j)}

(1)

wherep(i, j) =
∑j

k=i p(i) can be calculated on the fly along withc(i, j), which is calculated in order of
increasing|j − i|. The last minimization determines which branch condition to use (e.g., “assume taken”
vs. “assume untaken”), while the minimizing value ofs is the splitting point for that subtree. The branch
condition to use — i.e., the bias of the branch — must be coded explicitly or implicitly in the software
derived from the tree.

Knuth [7] and Itai [12] begin with similar algorithms, then reduce complexity by using the property
that the splitting point of an optimal tree for their problems must be between the splitting points of the

6

two (possible) optimal subtrees of sizen− 1. Note that [12] claims that this property can be extended to
nonbinary decisions, a claim that was later disproved in [31]. The (binary) branching problem considered
here also lacks this property. Considerp = (0.3, 0.2, 0.2, 0.3) andc = (3, 1), for which optimal trees split
either at2, as in Fig. 2, or at4, the mirror image of this tree. In contrast, the two largest subtrees, as
illustrated in the figure and its mirror image, both have optimal splitting points at3. Similarly, applying the
less complex Hu-Tucker approach [8], [32] to the branch problem fails for p = (0.2, 0.15, 0.15, 0.2, 0.3)
and c = (3, 1).

The optimal tree of Fig. 2 is identical to the optimal tree returned by Itai’s algorithm for order-
restricted edges [12]. Consider a larger example in which this is not so, the binomial distributionp =
(1, 6, 15, 20, 15, 6, 1)/128 with c = (11, 2). If edge order is restricted as in [12], the tree at Fig. 3(a)
is optimal, yielding an expected cost of15.109375. If we relax the restriction, as in the problem under
consideration here, the tree at Fig. 3(b) is optimal, with anexpected cost of12.984375, a14% improvement.

2

2

2

2

2

2

11

11

11

11

11

11

(a) Edge order restricted

2

2

2

2

2

2

11

11

11

11

11

11

(b) Edge order unrestricted

Fig. 3. Optimal branch trees for two restriction types forp = (1, 6, 15, 20, 15, 6, 1)/128 with c = (11, 2)

A practical application of this formulation is encounteredin implementation of the ONE-SHIFT Huff-
man decoding technique introduced in [6]. This implementation of optimal prefix coding is fastest for
applications with little memory or small caches. (If enoughmemory is available, other approaches can be
somewhat faster for certain prefix codes and architectures,especially when architecture details are taken
into account in program design [33]). Where the ONE-SHIFT technique is the preferred technique, we can
apply the methods of this section to optimize the method’s decision tree. In the implementation illustrated
in [6], the decision tree is used to determine codeword lengths based on 32-bit keys. The suggested
“optimal search” strategy involves a hard-coded decision tree in which branches occur if “greater than
or equal to” each splitting point; in most static branch schemes, this would result in “less than” taking
fewer cycles than “greater than or equal to,” but the tree used in [6] was found assuming fixed branch
costs [34]. Here we show that we can improve upon this.

Consider the optimal prefix code for random variableX drawn from the Zipf distribution withn = 216,
that is,P[X = i] = 1/(i

∑n
j=1 j−1) which is approximately equal to the distribution of then most common

words in the English language [35, p. 89]. Using Huffman coding, one can find that this code has codeword
lengthsℓ(X) between4 to 20, with the number of codewords of each size and the probability that the
codeword will be a certain size given by Table II.

Now consider a decision tree to find codeword lengths with an architecture in which comparisons that
result in untaken branches take3 cycles (for both compare and branch), while comparisons that result in
taken branches take5 cycles. This asymmetry, similar to that of many ARM architectures, is small, but
taking advantage of it results in an improved tree. This optimal tree, shown in Fig. 4, takes an average
of 15.93 cycles, while the “optimal search” (Hu-Tucker) approach takes an average of16.44 cycles. This
3.1% improvement, although not as large as that of the binomial example, is still significant due to the

7

length (ℓ) # of codewords p(i)
4 1 (20) P[ℓ(X) = 4] = 0.08570759
5 2 (21) P[ℓ(X) = 5] = 0.07142299
6 4 (22) P[ℓ(X) = 6] = 0.06509695
7 8 (23) P[ℓ(X) = 7] = 0.06216987
8 16 (24) P[ℓ(X) = 8] = 0.06076807
9 32 (25) P[ℓ(X) = 9] = 0.06008280

10 64 (26) P[ℓ(X) = 10] = 0.05974408
11 128 (27) P[ℓ(X) = 11] = 0.05957570
12 256 (28) P[ℓ(X) = 12] = 0.05949175
13 512 (29) P[ℓ(X) = 13] = 0.05944984
14 1024 (210) P[ℓ(X) = 14] = 0.05942890
15 2048 (211) P[ℓ(X) = 15] = 0.05941844
16 4096 (212) P[ℓ(X) = 16] = 0.05941321
17 8192 (213) P[ℓ(X) = 17] = 0.05941059
18 16384 (214) P[ℓ(X) = 18] = 0.05940928
19 32747 (215

− 1) P[ℓ(X) = 19] = 0.05940732
20 2 P[ℓ(X) = 20] = 0.00000262

TABLE II

DISTRIBUTION OF HUFFMAN CODEWORD LENGTHS FORZIPF’ S LAW

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

5

5

5

5 5

5

5

5

5

5

5

55

5

5

5

Fig. 4. Optimal branch tree for codeword lengths in optimal prefix coding of Zipf’s law

impact of the decision tree on overall algorithm speed.
The O(n3) complexity used to get these better results is generally notlimiting. Although this restricts

the range of problems solvable within a given time, most hard-coded decision tree problems are small
enough to be solved quickly. Larger problems do not generally follow this model due to issues such as
instruction caching. In addition, some problems, such as the aforementioned grade-assignment problem,
are actually better solved via alternative means whenn is large; a division and lookup table might be more
suitable, for example, if there are dozens of different grades. Note that if larger decision trees are required,
the O(n2) space requirement for finding them would likely become an issue before time complexity.

If p(·) is unknown or unspecified, it is common to assume thatp(i) = 1/n. This is justified by noting
that, if p(·) is considered a random vector drawn from the probability simplex according to densityg —
as in [36] — the expected cost for a given coding scheme is

Ep[Tp,c(b)] = Ep

n
∑

i=1

p(i)

l(i)
∑

j=1

cbj(i)

 =
n

∑

i=1

Ep[p(i)]

l(i)
∑

j=1

cbj(i)

8

and, if g is a symmetric function over its arguments,E[p(i)] = 1/n for all i. Since edge costs are not
fixed, optimal trees for this uniform distribution need not be complete trees, that is, full trees for which all
leaves have either depth⌊log2 n⌋ or ⌈log2 n⌉. For example, the tree in Fig. 2 is optimal for this uniform
distribution with an average cost of3.75 (again, withc = (3, 1)), whereas the complete tree forn = 4
results in an average cost of4. This is thus a better approach to use for compilers that codeswitch (case)
statements partially [5] or entirely [4] as decision trees.

In most instances of static prediction, the disparity in performance between correctly anticipated branches
and incorrectly anticipated branches is not as great as thatfor recent versions of the Pentium architectures,
in which properly modeling the asymmetry of decision tree performance is even more important.

III. M ORE ADVANCED MODELS

With dynamic branch prediction [14], which in more advancedforms includes branch correlation,
branches are predicted based on the results of prior instances of the same and different branch instructions.
This results in improved branch predictability for most software implementations, especially those in
which branch profiling does not enter into software design. Where branch profiling does take place,
however, the gains are often only marginal [14, pp. 245–248]. Thus, although large processors and
general-purpose processors generally include dynamic prediction, many small processors and low-power
processors forgo dynamic prediction, as this feature’s sophistication requires the usage of significant
additional semiconductor area and power for the associatedlogic. Where dynamic prediction is used,
several predictors will often be used for the same branch instruction instance; the predictor in a given
iteration will be based on the history of that branch instruction instance and/or other branches. In the
problem we are concerned with, however, this does not resultin as many complications as one might
expect; the probability of a given branch outcome conditional on the branches that precede it is identical
to the probability of the branch outcome overall. In the caseof previous branch outcomes for the same
search instance — i.e., those of ancestors in the tree — any given outcome is conditioned on the same
events — i.e., the events that lead to the branch being considered. In the case of branches used to find
previous items, if items are independent, so are these branches. In the case of branches outside of the
algorithm, these can also be assumed to be either fixed given or independent of the current branch.

Thus, as long as each branch predictor is assigned at most oneof the decision tree branches, prediction
can be modeled as a random process. Although initial predictions are made using static criteria (often
including optimal branch hints, as in the Intel Pentium 4 [37, p. 2-2] and the MIPS R4000 [38, p. 21]), the
dynamic process results in each predictor converging to a stationary distribution, which can be analyzed
and optimized for. Such a random process necessarily performs worse than optimized static prediction,
although, in most instances, the difference is not too great. The cost of each branch result can be determined
by the expected time taken by the branch, based on the costs involved and the probability that the branch
is correctly predicted. Simple analysis of the stationary distribution of a branch prediction Markov chain,
e.g., [39], can yield the expected time for a given branch direction as a function of the probability of the
branch.

Consider the example of using a saturating up-down counter —the two-bit Markov chain of [40]
shown as a Moore state diagram in Fig. 5(a) — for branch prediction. If the predictor is in states0 or 1,
it predicts that a branch will not be taken (N), whereas if it is in states2 or 3, it predicts that a branch
will be taken (T). If the actual branch is untaken, the state will decrement (with a lower bound of0);
otherwise, it will increment (with an upper bound of3). The probability of misprediction is thus the joint
probability of being in states0 or 1 and the branch being taken plus the joint probability of being in 2
or 3 and the branch being untaken. This probability, found usingstandard algebraic methods for finding
the stationary distribution, is

fA2(p1) , P[mispredict on A2] =
p1 − p2

1

1 − 2p1 + 2p2
1

9

N N N N

TTTT

0/N 1/N 2/T 3/T

(a) A2 (recent Pentium architectures)

N

N N N

T

T TT

0/N 1/N 2/T 3/T

(b) A3 (Computer Architecture – A Quantitative Approach)

Fig. 5. Moore state diagrams for branch prediction

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Probability of less likely outcome

P
ro

ba
bi

lit
y

of
 m

is
pr

ed
ic

tio
n

Fig. 6. Static and dynamic branch misprediction rates (top-to-bottom: A3, A2, static prediction)

where p1 is the probability the less likely event will occur given thebranch being considered. This
Markov chain is used by the more recent Pentium architectures [15] and is referred to by Yeh and Patt
as Automation A2 [41]. If branch prediction instead uses thetwo-bit Markov chain of [42], as in the
MIPS-influenced pedagogical architecture in [14] and in Fig. 5(b), then the probability of a misprediction
is given by

fA3(p1) , P[mispredict on A3] =
p1 + p2

1 + 4p3
1 + 2p4

1

1 − p1 + p2
1

.

This chain is referred to by Yeh and Patt as Automation A3.
Other state diagrams were considered by Yeh and Patt, but arenot in as wide use, either being too simple

or lacking symmetry between taken and untaken branches. We should also note that these automations
existed prior to Yeh and Patt, e.g., in [43], where it is notedthat, for each of the tested programs and
architectures, there is little to no difference in performance between them. For the decision tree application,
asymptotic performance is determined by the correspondingstationary misprediction rate (Fig. 6), which
is worst for Automation A3 (dotted plot), having a rate up to 26.92% worse than that for static prediction
(solid plot). Automatic A2 (dashed plot) does better, beingat most 20.71% worse than static prediction.
These statistics can be used as performance bounds in combination with those derived in Section II to
approximate performance in linear time prior to application of the algorithm.

In either dynamic case, we can compute optimal expected costfrom the probabilities of each branch.
Assume that taken and untaken branches are symmetric, that is, a branch rightly predicted as untaken has
the same cost as a branch rightly predicted as taken, and mispredicted branches similarly have identical

10

costs. Let the type of dynamic prediction beA, let the probability of the more likely subtree bepmax, and
let the probability of the less likely subtree bepmin, so thatpmin + pmax ≤ 1 andp1 = pmin/(pmin + pmax)
is the probability of the less likely outcome conditional onthe branch being decided upon. Then, instead
of the static cost ofc0pmin + c1pmax, the expected cost of a given branch is

C(pmin, pmax) , c0(pmin + pmax)fA

(

pmin

pmin + pmax

)

+ c1(pmin + pmax)

(

1 − fA

(

pmin

pmin + pmax

))

.

Thus this plus the inductively computed costs of the subtrees is the overall tree cost.
Additional performance factors might include an additional asymmetry between taken and untaken

branches, the performance of branch target buffers (which are discussed in [43] and [14]), and differences
among different comparison types. For example, if a(<,≥) comparison with a certain value has a smaller
cost than a comparison with another value — say a comparison with a power of two times a variable is
faster due to reduced calculation time — then this can also betaken into account. Similarly, conditional
instructions, often preferable to conditional branches, can often be used, but only to eliminate a branch to
leaves in the decision tree. Thus branches deciding betweenonly two items might be accounted differently
than other branches.

With such a variety of coding options, there could be multiple possible costs for any particular decision.
A general cost function taking all this into account represents asCk(p

′, p′′, i, j, s) the cost of choosing
the kth of m splitting methods for the step necessary to split a subtree for items [i, j] at splitting point
s, with splitting outcome probabilitiesp′ and p′′. (The most common value form is 2, the two choices
being to assume a taken branch versus to assume an untaken branch.) The corresponding generalization
of (1) is:

c(i, i) = 0
ck(i, j) = min

s∈(i,j]
{Ck(p(i, s − 1), p(s, j), i, j, s) + c(i, s − 1) + c(s, j)} ∀k

c(i, j) = min
k∈[1,m]

{ck(i, j)} .
(2)

Once again, this is a simple matter of dynamic programming, and, assuming allCk are calculable in
constant time, this can be done inO(mn3) time andO(n2 + n log m) space, thelog m term accounting
for recalculation and storage of the type of cost function (decision method) used for each branch. An
even more general version of this could take into account properties of subtrees other than those already
mentioned, but we do not consider this here.

Because dynamic prediction is adaptive to dynamic branch performance, we need not explicitly code
branch bias; the more and less likely branch outcomes will automatically be detected. However, most
dynamic predictors begin with state that depends on the typeof branch in the same manner as static
prediction. That is, the first time a branch is encountered, it is usually statically predicted. Thus it is often
worthwhile to modify the algorithm so as to have initial iterations of the decision tree behave as well as
possible given the tree optimal for asymptotic behavior. Such a modification increases neither time nor
space complexity for the above algorithm.

If the software is predetermined but the tree is not — that is,if the software is not hard coded
for the specific tree — then matters change entirely; no prediction and static prediction result in this
problem being equivalent to that of ordered edges, the problem proposed by Knuth and considered by Itai.
Dynamic prediction with correlations, on the other hand, can result in a number of outcomes, depending
on implementation. The software on a given processor could have near-perfect distinguishing of outcomes,
in which the above dynamic analysis persists. More likely, without sufficient unrolling [14] of the tree data
structure, there would be confusion of outcomes, as the software would not know whether all previous
branches untaken indicates being at the root, at its right child, at its right child’s right child, etc. Optimizing
for the complex dependencies involved with such a system is no longer within the above framework, and
the overall averaging effect means that one might want to just use the tree optimal for a corresponding static
problem. Therefore the aforementioned methods are usuallybest suited for when the user has the option

11

p(1) p(2)

p(3) p(4)

p(5)

(a) Alphabetic tree (βi = 0)

p(1)

p(2)

p(3)

p(4)

(b) Search tree (αi = 0)

β1

β2

β3

β4

α0 α1

α2 α3

α4

(c) Full search tree

Fig. 7. Sample search trees

of designing software specifically for a given decision tree, or designing hardware and/or programmable
logic to allow the methods to work in fixed software.

IV. SEARCH TREES AND EQUALITY COMPARISONS

Knuth showed how a dynamic programming approach can be used for general search trees [7], in which
the decision is no longer binary, but is instead, “Is the output greater than, less than, or equal tox?” This
allows items to be implicitly or explicitly stored within the internal nodes (nonleaves) of the decision tree
and allows us to consider items that might not be in a search tree. This model generalizes the concept
of an alphabetic decision tree and can be used for applications in which there is an inherent “dictionary”
known of items, such as token parsing and spell checking. Probabilities for both present and missing
items are then needed.

Before formalizing this, we should note a few things about the applicability of the search tree model.
Clearly the grade-finding problem at the beginning of this paper does not fall into this model, as strict
equality cannot be tested for apart from directional inequality. Even where this model is applicable, it
can be too restrictive. For example, this model is often inferior to the alphabetic model for the simple
reason that, on most hardware, including all hardware considered here, three-way branches are not native
operations. They must thus be simulated by two two-way branches in a manner that actually results in
greater run time. Experimental analysis of this phenomenoncan be found in [44] and numerical analysis
can be found in [45] and [46, pp. 344–345]. These all find that an alphabetic tree is usually preferable in
practice. Thus we only briefly discuss issues of this search tree model.

For items1 through n′, βi is defined as the probability that a search yields itemi and αi as the
probability that a search fails and the item not in the searchtree would be lexicographically between
items i and i + 1; α0 is the probability it is beforeβ1 andαn is the probability it is afterβn. Thus

n′
∑

i=1

βi +

n′
∑

i=0

αi = 1.

The alphabetic tree scenario is a special case, withn′ = n− 1, βi = 0, andαi = p(i + 1), as in Fig. 7(a)
for n = 5. Fig. 7(b) is a similar search tree configured for a three-waycomparison; this time, there are
only four items, and it is assumed that all items searched forwill be in the tree. Fig. 7(c) is the same
four-item search tree allowing one to search for both items in the tree (with probabilities{βi}) and ranges
of missing items (with probabilities{αi}).

In such a model, there are now three costs associated with a given node; the cost of the two branches
c0 and c1, and the cost of an equality,e. The addition of this cost to (1) in the case of static prediction

12

or no prediction yields:

c(i, i) = 0
p(i, i) = αi

c′(i, j) = mins∈(i,j]{c0p(i, s − 1) + c1p(s, j) + eβs + c(i, s − 1) + c(s, j)}
c′′(i, j) = mins∈(i,j]{c1p(i, s − 1) + c0p(s, j) + eβs + c(i, s − 1) + c(s, j)}
c(i, j) = min {c′(i, j), c′′(i, j)}
p(i, j) = p(i, s − 1) + βs + p(s, j) ∀s

where the root case isc(0, n′) and p(i, j) is usually calculated using the optimizings for the overall
subtree in question.

Again, one can generalize this as in (2); for example, the cost of an equality comparison need not be
fixed. A further generalization in which the equality comparison key value is different than the inequality
comparison value has been considered for the constant edge costs, e.g., [47], [48]. Approaches for solving
this have led to the more germane problem in which, rather than allowing an inequalityand an equality
comparison in each step, one allows an inequalityor an equality comparison in each step. This is known
as thetwo-way key comparisonproblem. If data are highly irregular such that the most probable item
is much more probable than any other and is alphabetically neither first nor last, then an initial equality
comparison to the most probable item — if feasible — would likely improve on the “optimal”(<,≥)
decision tree. For fixed edge costs, the algorithm for solving this is aO(n5)-time O(n3)-space dynamic
programming algorithm [49]. In this algorithm, instead of just i and j, a third variabled represents the
number of items missing from the subtree due to equality comparisons above this subtree; this accounts
for the increased complexity. This algorithm uses the conjecture that equality comparisons should always
be with the most likely (remaining) item. This was not provedfor equal edge costs, and, even given
its veracity for equal edge costs, it is not clear whether this would also be true for unequal edge costs.
Nevertheless, no counterexample has been presented, so it is a safe assumption to make, especially since
such trees would necessarily perform at least as well as the optimal binary decision tree.

The two-way comparison algorithm has been extended to a large variety of problems, including a
problem with nine different branch costs: unequal (ordered) costs for(=, 6=) testing, unequal (ordered)
costs for(≤, >) testing, unequal (ordered) costs for(<,≥) testing, and unequal (ordered) costs for three-
way testing [50, Chapter 9]. This algorithm can be easily modified for unordered costs by adding tests for
(6=, =), (>,≤), (≥, <), and other three-way tests. Other modifications can be made in a similar manner
to those discussed in this paper. Note that some variants of this problems have complexity reduced from
O(n5) to O(n4) [49], [51], although this has not been shown to be true of the more general cases which
most accurately represent the behavior of hard-coded search trees.

V. CONCLUSION

In this paper, we presented methods for finding optimal decision and search trees given the real-world
behavior of microprocessors, in which not all queries and decision outcomes have identical temporal
costs. This approach most often assumes we can hard code the decision tree based on a known probability
distribution and known processor behavior. The simplest method, that of Section II, must be generalized for
more complex processor prediction techniques, as well as for other subtler performance considerations and
for cases in which equality comparisons are allowed. Due to the large asymmetry of branch performance
in complex processors, this often results in strictly better hard-coded search trees than the “optimal” trees
produced using traditional methods.

REFERENCES

[1] T. M. Cover and J. A. Thomas,Elements of Information Theory, 1st ed. New York, NY: Wiley-Interscience, 1991.
[2] C. Dickens,A Christmas Carol. London, UK: Chapman and Hall, 1843, available from http://www.gutenberg.org/etext/46.
[3] A. Rényi, A Diary on Information Theory. New York, NY: John Wiley & Sons Inc., 1987, original publication: Naplò az

információelméletről, Gondolat, Budapest, Hungary, 1976.

13

[4] A. Sale, “The implementation of case statements in Pascal,” Softw., Pract. Exper., vol. 11, no. 9, pp. 929–942, Sept. 1981.
[5] J. L. Hennessy and N. Mendelsohn, “Compilation of the Pascal case statement,”Softw., Pract. Exper., vol. 12, no. 9, pp. 879–882,

Sept. 1982.
[6] A. Moffat and A. Turpin, “On the implementation of minimum redundancy prefix codes,”IEEE Trans. Commun., vol. 45, no. 10, pp.

1200–1207, Oct. 1997.
[7] D. E. Knuth, “Optimum binary search trees,”Acta Informatica, vol. 1, pp. 14–25, 1971.
[8] T. C. Hu and A. C. Tucker, “Optimal computer search trees and variable-length alphabetic codes,”SIAM J. Appl. Math., vol. 21, no. 4,

pp. 514–532, Dec. 1971.
[9] A. M. Garsia and M. L. Wachs, “A new algorithm for minimum cost binary trees,”SIAM J. Comput., vol. 6, no. 4, pp. 622–642, Dec.

1977.
[10] D. E. Knuth,The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd ed. Reading, MA: Addison-Wesley, 1998.
[11] ——, The Art of Computer Programming, Vol. 3: Sorting and Searching, 1st ed. Reading, MA: Addison-Wesley, 1973.
[12] A. Itai, “Optimal alphabetic trees,”SIAM J. Comput., vol. 5, no. 1, pp. 9–18, Mar. 1976.
[13] M. T. Shing, “Optimum ordered bi-weighted binary trees,” Inf. Processing Letters, vol. 17, pp. 67–70, Aug. 1983.
[14] J. L. Hennessy and D. A. Patterson,Computer Architecture – A Quantitative Approach, 3rd ed. San Francisco, CA: Morgan Kaufmann

Publishers, 2003.
[15] A. Fog, “The microarchitecture of Intel and AMD CPUs: Anoptimization guide for assembly programmers and compiler makers,”

2007, available from http://www.agner.org/optimize/.
[16] D. E. Knuth,The Art of Computer Programming, Vol. 1, Fascicle 1 : MMIX – A RISC Computer for the New Millennium. Addison-

Wesley, 2005.
[17] “Intel R© XScale

TM
microarchitecture technical summary,” Intel Corporation, available from http://www.intel.com/design/intelxscale/.

[18] “Performance of the ARM9TDMI
TM

and ARM9E-S
TM

cores compared to the ARM7TDMI
TM

core,” ARM Limited, available from
http://www.arm.com/pdfs/comparison-arm7-arm9-v1.pdf.

[19] “ARM1176JZF-S
TM

technical reference manual,” ARM Limited, 2007, availablefrom http://www.arm.com/pdfs/DDI0301F
arm1176jzfsr0p6 trm.pdf.

[20] J. Abrahams, “Code and parse trees for lossless source encoding,” Communications in Information and Systems, vol. 1, no. 2, pp.
113–146, Apr. 2001.

[21] D. Altenkamp and K. Mehlhorn, “Codes: Unequal probabilities, unequal letter costs,”J. ACM, vol. 27, no. 3, pp. 412–427, July 1980.
[22] R. M. Krause, “Channels which transmit letters of unequal duration,” Inf. Contr., vol. 5, no. 1, pp. 13–24, Mar. 1962.
[23] E. N. Gilbert and E. F. Moore, “Variable-length binary encodings,”Bell Syst. Tech. J., vol. 38, pp. 933–967, July 1959.
[24] D. A. Huffman, “A method for the construction of minimum-redundancy codes,”Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.
[25] J. van Leeuwen, “On the construction of Huffman trees,”in Proc. 3rd Int. Colloquium on Automata, Languages, and Programming,

July 1976, pp. 382–410.
[26] D. E. Knuth,The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997.
[27] R. M. Karp, “Minimum-redundancy coding for the discrete noiseless channel,”IRE Trans. Inf. Theory, vol. 7, no. 1, pp. 27–38, Jan.

1961.
[28] M. J. Golin and G. Rote, “A dynamic programming algorithm for constructing optimal prefix-free codes for unequal letter costs,”IEEE

Trans. Inf. Theory, vol. IT-44, no. 5, pp. 1770–1781, Sept. 1998.
[29] P. G. Bradford, M. J. Golin, L. L. Larmore, and W. Rytter,“Optimal prefix-free codes for unequal letter costs: Dynamic programming

with the Monge property,”J. Algorithms, vol. 42, no. 2, pp. 219–223, Feb. 2002.
[30] H. Vaishnav and M. Pedram, “Alphabetic trees—theory and applications in layout-driven logic synthesis,”IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 20, no. 1, pp. 58–69, Jan. 2001.
[31] L. Gotlieb and D. Wood, “The construction of optimal multiway search trees and the monotonicity principle,”Intern. J. Computer

Maths, Section A, vol. 9, no. 1, pp. 17–24, 1981.
[32] T. C. Hu, D. J. Kleitman, and J. K. Tamaki, “Binary trees optimum under various criteria,”SIAM J. Appl. Math., vol. 37, no. 2, pp.

246–256, Apr. 1979.
[33] G. Cheung and S. McCanne, “An attribute grammar based framework for machine-dependent computational optimization of media

processing algorithms,” inProc. 1999 International Conf. on Image Processing, vol. 2, July 24–28, 1999, pp. 797–801.
[34] A. Turpin, Private communication, Nov. 2006.
[35] G. K. Zipf, “Relative frequency as a determinant of phonetic change,”Harvard Studies in Classical Philology, vol. 40, pp. 1–95, 1929.
[36] T. M. Cover, “Admissibility properties of Gilbert’s encoding for unknown source probabilities,”IEEE Trans. Inf. Theory, vol. IT-18,

no. 1, pp. 216–217, Jan. 1972.
[37] “IA-32 Intel R© architecture software developer’s manual volume 2A: Instruction set reference, A-M,” Intel Corporation, available from

http://www.intel.com/design/pentium4/manuals/253666.htm.
[38] J. Heinrich, “MIPS R4000 microprocessor user’s manual,” MIPS Technologies, Inc., 1994, available from http://techpubs.sgi.com/

library/manuals/2000/007-2489-001/pdf/.
[39] P. G. Hoel, S. C. Port, and C. J. Stone,Introduction to Stochastic Processes. Boston, MA: Houghton Mifflin Company, 1972.
[40] S. T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of dynamic branch prediction using branch correlation,” in Proc., Tenth

Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS V), Oct. 1992, pp. 76–84.
[41] T.-Y. Yeh and Y. N. Patt, “Alternative implementationsof two-level branch prediction,” inProc., 19th Annual Int. Symposium of

Computer Architecture, May 1992, pp. 124–134.
[42] S. McFarling and J. Hennessy, “Reducing the cost of branches,” inProc., 13th Annual Int. Symposium of Computer Architecture, June

1986, pp. 396–403.
[43] J. Lee and A. Smith, “Branch prediction strategies and branch target buffer design,”Computer, vol. 17, no. 1, pp. 6–22, Jan. 1984.
[44] A. Andersson, “A note on searching in a binary search tree,” Softw., Pract. Exper., vol. 21, no. 10, pp. 1125–1128, Oct. 1991.

14

[45] T. C. Hu and P. A. Tucker, “Optimal alphabetic trees for binary search,”Inf. Processing Letters, vol. 67, no. 3, pp. 137–140, Aug.
1998.

[46] T. C. Hu and M. T. Shing,Combinatorial Algorithms, 2nd ed. Mineola, NY: Dover Publications, 2002.
[47] S.-H. S. Huang and C. K. Wong, “Generalized binary splittrees,”Acta Informatica, vol. 21, pp. 113–123, 1984.
[48] J. H. Hester, D. S. Hirschberg, S.-H. H. Huang, and C. K. Wong, “Faster construction of optimal binary split trees,”J. Algorithms,

vol. 7, no. 3, pp. 412–424, Sept. 1986.
[49] D. A. Spuler, “Optimal search trees using two-way key comparisons,”Acta Informatica, vol. 31, no. 9, pp. 729–740, Nov. 1994.
[50] ——, “Optimal search trees using two-way key comparisons,” Ph.D. dissertation, James Cook University, 1994.
[51] R. Anderson, S. Kannan, H. Karloff, and R. E. Ladner, “Thresholds and optimal binary comparison search trees,”J. Algorithms, vol. 44,

no. 2, pp. 338–358, Aug. 2002.

