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Abstract

A commonly used type of search tree is the alphabetic binaw, twhich uses (without loss of generality)
“less than” versus “greater than or equal to” tests in ordetd@termine the outcome event. The process of finding
an optimal alphabetic binary tree for a known probabilitytdbution on outcome events usually has the underlying
assumption that the cost (time) per comparison is uniforchthns independent of the outcome of the comparison.
This assumption, however, is incorrect in the case of soéwa be optimized for a given microprocessor, e.g.,
compiling switch statements or fine-tuning program boteks. Branch prediction causes the cost for the more
likely comparison outcome to be less — often far less — thartHe less likely comparison outcome. Here we
introduce a variety of novel dynamic programming algorighto solve both such alphabetic binary tree problems
and more general search tree problems, optimizing for thexder of processors with predictive branch capabilities,
both static and dynamic. Entropy-based performance botemibe used to quickly estimate performance of optimal
alphabetic binary trees. Solutions found using these naisthoe often faster in practice than “optimal” search trees
as formulated in the literature.

Index Terms

Branch prediction, graph and tree search strategies, aptfphabetic tree.

. INTRODUCTION

Consider a problem of assigning grades to tests. Theseregtd be administered to humans or to
objects, but in either case there are gratésroughn — n being5 in most academic systems — and the
corresponding probabilities of each gragél) throughp(n), can be assumed to be known; if unknown,
they are assumed to be identical. Each grade is determineakig the actual score; dividing it by
the maximum possible scoré, and seeing which of. distinct fixed intervals of the fornfv;_,,v;) the
key (ratio)a/b lies in, wherevy, = —oo andv,, = +oo. This process is repeated for different values of
a and b enough times that it is worthwhile to consider the fasteshmea in which to determine these
grades (or, in general, “items”).

A straightforward manner of assigning scores would be tdipiyl(or shift) « by a constank (log, k),
divide this by b, and use lookup tables on the scaled ratio. However, divigoa slow step in most
CPUs — and not even a native operation in others — and a locaklp,tif large, can take up valuable
cache space. The latter problem can be solved by using a imatneosmparisons to determine the score,
resulting in a type of search tree known a®iaary decision treeof an alphabetic binary treeln fact,
with this decision tree, we can eliminate division altogethnstead of comparing scaled ratia/b with
grade cutoff valuey;, we can equivalently compare: with bv;, replacing the slow division of variable
integers with a fast multiplication of a variable and a fixeteger. Depending on the application, this
can be useful even i = 1 and no division is inherent in the problem. The only mattext ttemains is
determining the structure of the decision tree.

Such trees have a large variety of applications, includimgtechnical uses, such as the game of Twenty
Questions [1, pp. 94-95] (also known as “Yes and No” [2] orr*Rachba” [3]). Technical uses includes
the compilation of switch (case) statements [4], [5]. Animized binary decision tree is known as an
optimal alphabetic binary tree
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if (V >= 34) conpare V, 34
branch to Mif V<34
conpare V, 42
branch to Kif V<42
conpare V, 65
branch to I if V<65
P=1

go to N

P=2

go to N

P=3

go to N

P=4

end

if (V >= 42)

if (V >= 65)

el se
el se

el se
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Fig. 1. Steps in a simple decision tree

Often times these decision trees are hard coded into s&tfearthe sake of efficiency, as in the high-
speed low-memory @e-SHIFT Huffman decoding technique introduced in [6] and illustchusing C
code in Fig. 2 of the same paper. A shorter but similar decisiee is illustrated in Fig. 1 above by
means of C and assembly-like pseudocode. We discuss thgesamme in Section Il of this paper, where
a pictorial representation of the tree is given as Fig. 2.

Algorithms used for finding such trees generally find treeghvminimum expected path length, or,
equivalently, minimum expected number of comparisons[Pf]-We, however, want a tree that results
in minimum expected run time, which is generally expressettims of machine cycles, since these are
usually constant time for a given machine in a given mode. gdreeral assumption in finding an optimal
decision tree is that these goals are identical, that i$,eheh decision tree (edge) takes the same amount
of time (cost) as any other; this is noted in Section 6.2.2 nbitk’s The Art of Computer Programming
[10, p. 429]. In exercise 33 of Section 6.2.2, however, itaaaeded that this is not strictly true; in the
first edition, the exercise asks for an algorithm for wheeréhs an inequity in cost between a fixed cost
for a left branch and a fixed cost for a right branch [11], amdthie second edition, a reference is given
to such an algorithm [12]. Such an approach has been extdnd=ses where each node has a possibly
different, but still fixed, asymmetry [13].

In practice the asymmetry of branches in a microprocessdiffisrent in character from any of the
aforementioned formulations. On complex CPUs, such asetliwsthe Pentium family, branches are
predicted as taken or untaken ahead of execution. If thechranpredicted correctly, operation continues
smoothly and the branch itself takes only the equivalentrna or two other instructions, as instructions
that would have been delayed by waiting for the branch outcame instead speculatively executed.
However, if the branch is improperly predicted, a penalty fasprediction is incurred, as the results
of speculatively executed instructions must be discardetithe processor returned to the state it was
at prior to the branch, ready to fetch the correct instrucstream [14]. In the case of the Pentium 4
processor, a mispredicted branch takes the equivalentasindoof instructions [15]. This penalty has only
increased with the deeper pipelines of more recent procesathile this time penalty pales in comparison
to time taken by division — over a hundred adds and shifts e&e place in the time it takes to do
one 32-bit division on Pentium-family processors — it cetffareveals comparison tally as being a poor
approximation to run time, the ideal minimization.

In this paper, we discuss the construction of alphabetiaritrees — and more general search trees
— which are optimized with respect to the behavior of cowodiil branches in microprocessors. We
introduce a general dynamic programming approach, oneicajp¢ to such architecture families as



the Intel Pentium architectures, which use advanced dymémanch prediction; ARM Limited’s ARM
architectures, most instances of which use static branetigifon; and Knuth’s MMIX architecture, in
which branch instructions explicitly “hint” whether or ntite corresponding branches are assumed taken
or untaken [16, p. 20]. The first two of these are not only repneéative of two styles of branch prediction;
they are also by far the most popular processor archited¢tundies for 32-bit personal computers and
32-bit embedded applications, respectively. Pentiumgtssand the XScale [17] — which is viewed as
the successor to ARM architecture StrongARM — use dynamediption. ARM architectures such as
those of the ARM7 and ARM9 families use static branch préaicf{18]. Such processors are used for
mobile devices such as cell phones and iPods. Some other AfRMyf processors use no prediction;
that is, they speculatively execute instruction by alwagsuaing that branches are untaken. Some more
recent ARM processors — like the ARM1176JZF-S, the proaesaderlying the Apple iPhone — use
dynamic branch prediction by default, but have modes foticstaranch prediction and for no branch
prediction [19].

Because the approach introduced here is more general thamt exphabetical dynamic programming
methods, using it to find optimal decision trees is somewlaves, havingO(n?)-time O(n?)-space
performance. This generality allows for different costsn(times) for different comparisons due to such
behaviors as dynamic branch prediction and the use of dondltinstructions other than branches. In the
simplest case of static branch prediction, entropy-bagetbpnance bounds are obtained based on known
results from related unequal edge-cost problems. Thestigesn be extended to cases of dynamic branch
prediction. It should be emphasized that the one-tit{@?)-time O(n?)-space cost of optimization of
these (usually small) problems is dwarfed by even the s@ghgain in repeated run-time performance.
The main contribution is thus a method by which decisionsrean be coded on known hardware in
order to have minimum expected execution time.

[I. NO PREDICTION AND STATIC PREDICTION

Consider Knuth’'s pedagogical MMIX architecture [16], wimibas a simple rule for branching: If a
“hint” indicates that a branch should be taken, a taken Wravilt take fewer cycles; otherwise, an untaken
branch will take fewer cycles. Thus, if we know ahead of timick branch is more likely and which
less likely, we can hard code the more likely branch to takec clock cycles and the less likely branch
to take3 + ¢ clock cycles, where represents the time taken by instructions other than thechraself,
e.g., multiplications, additions, comparisons.

It is easy to code asymmetric branch biases for such hirgebaschitectures, for no branch prediction,
and for static branch prediction. In static prediction, age or branch direction is used to determine
whether or not a branch is presumed taken, the most commemeuhg that forward conditional branches
are presumed taken and backward conditional branches eserped not taken [14]. If the presumption
is satisfied, the branch takes a fixed number of cycles, wihilejs not, it takes a greater fixed number
of cycles. Assume, for example, that we want to use a forwaaddh, which is assumed not to be taken.
We thus want the less likely outcome to be the costlier ora, tte branch is taken: If it is less likely
than not that the item is less thap the branch instruction should correspond to “branch i lg&anuv;,”
as in all branches used in Fig. 1.

This branching problemapplicable to problems with either no true branch predictr static branch
prediction, considers positive weights and ¢; such that the cost of a binary path with predictability
biby---by IS Z§:1 cy;, Whereb; = 0 if the jth of k comparisons is mispredicted ahd= 1 otherwise.
Such tree paths are often pictorially illustrated via edgiegth on the corresponding tree, so that path
depth corresponds to path cost, as in Fig. 2. This tree qgwnes to the C and pseudocode of Fig. 1.
The overall expected cost (time) to minimize is

1(7)

Tp,C(b> = ZP(Z) Z Co;(4)

J=1
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b1(2) =b1(3) =b1(4) =1

Fig. 2. An optimal branch tree with edge costs &&= (co,c1) = (3,1)

wherep(i) is the probability of theth item, (i) is the number of comparisons needed, &nd) is 0 if
the result of thejth branch for itemi is contrary to the prediction and otherwise.
More formally,

Given p=(p(1),p(2),...,p(n)), p(i) > 0,327, p(i) = 1;
Cp, C1 € R+ such thatC() > c1;
find B, a full binary tree

b, an assignment of costs to edgesidsuch that each nonleaf is connected
to its children by edges, one with cast, and the other with cost;;
minimizing 7,,.(b) = >, p(i) Zé@l Chy (i)'
where thejth edge along the path from root tth leaf is assigned cost, (;);
the number of edges on the path from rootitto leaf isi().

Sample representations are shown in Fig. 2 and Fig. 4, thmefobeing labeled with the values of
b;(7). Again, to emphasize the total cost in this pictorial reprgation, edges are portrayed with depth
proportional to their cost. The cost (and thus pictorialtdgpf leaf 3 in Fig. 2 is, for example,

1(3)
Ch;j(3) = Cby(3) T Cby(3) + Cbs(3)
j=1
= Cl+01+60:1+1+3:5.

Table | gives the context for this branching problem amorfgeobinary tree optimization problems.
These other problems are referred to as in the survey pafgrifzmost problem formulations, edge cost
is fixed, and, where it is not fixed, edges generally have @sterding to their order, i.e., a left edge has
costcy and a right edge has cost. Relaxing this edge-order constraint in the unequal-clpdtadetic
problem results in the branching problem we are now conisigeRelaxing the alphabetic constraint from
either the original alphabetic problem or the branchingofm leads to Karp’s nonalphabetic (coding)
problem; since output items in Karp’s problem need not be givan (e.g., alphabetical) order, the tree
optimal for the ordered-edge nonalphabetic problem is afgonal for the unordered-edge nonalphabetic
problem.

Thus the costr'®@P for the optimal tree under Karp’s formulation — also calldak topsided tree
problem— is a lower bound on the cost of the optimal branch tree, wasetiee cost™® for the optimal
tree under Itai’s (alphabetic) formulation is an upper bwn the cost of the optimal branch tree. This
enables the use of bounds in [21] — including the lower bourndimally formulated in [22] — for
the branching problem. Specifically, " is the optimal branching function ang®" = T, .(°") the
associated cost for the optimal tree, then

H(p) 221 pKarp  popt  pltai 124 H(p)+1
d - - N d

+ max {co, c1}



restriction on edge order and/or cost

restriction on output order Constant edge cost | Fixed edge-cost order| Unrestricted edge-cost order

Alphabetic Hu-Tucker [8]-[10], [23] Itai [12], [13] branching problem

Nonalphabetic Huffman [24]-[26] Karp [27]-[29]

TABLE |
TYPES OF DECISION TREE PROBLEMS

where H is the entropy functior (p) = — 3, p(i)log,p(i) andd satisfie2=4 + 2791 = 1. If p = ¢y/c4
andz is the sole positive root of” +z —1 = 0, thend = —c; 'log,z. Thus, for example, when= (3,1),
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sod = log,x~! ~ 0.5515 and

TP € [(1.813...)H(p), (1.813...)H(p) + 4.813. . ].

Whenc = (2,1), 2 = 1/¢ sod = log,6, Where ¢ is the golden ratiop = (/5 + 1)/2. These bounds
can be used to estimate optimal performance and determine &) time — whether or not to use a
decision tree when it is one of multiple implementation clesi

The key to constructing an optimizing algorithm is to notattAny optimal branching tree must have all
its subtrees optimal; otherwise one could substitute ammapisubtree for a suboptimal subtree, resulting
in a strict improvement in the result. The branching problienthus, to use the terminology of [30],
subtree optimalEach tree (and subtree) can be defined bysjttting points A splitting point beings
for the root of the tree means that all items (grades) aft@nd includings are in the right subtree while
all items befores are in the left subtree, as per the convention in [7], [10B] [&nd contrary to that in
[12]). Since there are — 1 possible splitting points for the root, if we know all potehioptimal subtrees
(of sizes1 throughn — 1) for all possible ranges, the splitting point can be founcbtigh sequential
search of the possible combinations. The optimal tree is fbund through dynamic programming, and
this approach ha®(n?) time complexity and)(n?) space complexity, in a similar manner to [23].

The dynamic programming algorithm is relatively straigitfard. Each possible optimal subtree for
itemsi throughj has an associated costj, j) and an associated probabilityi, j); at the endp(1,n)
is 1, andc¢(1,n) is the expected cost (run time) of the optimal tree.

The base case and recurrence relation we use are similange tf [12]. Given unequal branch costs
co andc; and probability mass functiop(-) for 1 throughn,

c(i,i) = 0

) = minse(i,j}{COp(iv S — 1) + Clp(svj) + C('L.v S — 1) + C(Svj)} (l)
) = mingeqj{ap(i,s —1) +cop(s,j) +c(i,s — 1) 4+ c(s,5)}

) = min{c(i,7),c"(i,5)}

wherep(i, j) = > . _, p(i) can be calculated on the fly along wity, j), which is calculated in order of
increasing|j — ¢|. The last minimization determines which branch conditiouse (e.g., “assume taken”
vs. “assume untaken”), while the minimizing valuesois the splitting point for that subtree. The branch
condition to use — i.e., the bias of the branch — must be coagtiogly or implicitly in the software
derived from the tree.

Knuth [7] and Itai [12] begin with similar algorithms, theeduce complexity by using the property
that the splitting point of an optimal tree for their problemmust be between the splitting points of the




two (possible) optimal subtrees of size- 1. Note that [12] claims that this property can be extended to
nonbinary decisions, a claim that was later disproved if.[Bhe (binary) branching problem considered
here also lacks this property. Consiger (0.3,0.2,0.2,0.3) andc = (3, 1), for which optimal trees split
either at2, as in Fig. 2, or ati, the mirror image of this tree. In contrast, the two largagditees, as
illustrated in the figure and its mirror image, both have gt splitting points a8. Similarly, applying the
less complex Hu-Tucker approach [8], [32] to the branch fambfails forp = (0.2,0.15,0.15,0.2,0.3)
andc = (3,1).

The optimal tree of Fig. 2 is identical to the optimal treeuraed by Itai's algorithm for order-
restricted edges [12]. Consider a larger example in which ighnot so, the binomial distributiop =
(1,6,15,20,15,6,1)/128 with ¢ = (11,2). If edge order is restricted as in [12], the tree at Fig. 3(a)
is optimal, yielding an expected cost ©5.109375. If we relax the restriction, as in the problem under
consideration here, the tree at Fig. 3(b) is optimal, witegmected cost af2.984375, a14% improvement.

(a) Edge order restricted (b) Edge order unrestricted

Fig. 3. Optimal branch trees for two restriction types fo= (1,6, 15, 20, 15,6, 1) /128 with ¢ = (11, 2)

A practical application of this formulation is encounteliedmplementation of the ®e-SHIFT Huff-
man decoding technique introduced in [6]. This implemeaitabf optimal prefix coding is fastest for
applications with little memory or small caches. (If enougbmory is available, other approaches can be
somewhat faster for certain prefix codes and architectesgsecially when architecture details are taken
into account in program design [33]). Where th&ESHIFT technique is the preferred technique, we can
apply the methods of this section to optimize the methodisiten tree. In the implementation illustrated
in [6], the decision tree is used to determine codeword lendtased on 32-bit keys. The suggested
“optimal search” strategy involves a hard-coded decisree in which branches occur if “greater than
or equal to” each splitting point; in most static branch sobs, this would result in “less than” taking
fewer cycles than “greater than or equal to,” but the treed useg6] was found assuming fixed branch
costs [34]. Here we show that we can improve upon this.

Consider the optimal prefix code for random varialledrawn from the Zipf distribution witn = 21¢,
thatis,P[X =] = 1/(i > 7_, j~") which is approximately equal to the distribution of thenost common
words in the English language [35, p. 89]. Using Huffman ogdone can find that this code has codeword
lengths/(X) betweend to 20, with the number of codewords of each size and the probgphiiat the
codeword will be a certain size given by Table II.

Now consider a decision tree to find codeword lengths withrahigecture in which comparisons that
result in untaken branches takecycles (for both compare and branch), while comparisonisrésalt in
taken branches take cycles. This asymmetry, similar to that of many ARM architees, is small, but
taking advantage of it results in an improved tree. Thisrogtitree, shown in Fig. 4, takes an average
of 15.93 cycles, while the “optimal search” (Hu-Tucker) approacketan average df6.44 cycles. This
3.1% improvement, although not as large as that of the biabexample, is still significant due to the



length ¢) # of codewords p(i)
4 1 (2 P¢(X)=4] = 0.08570759
5 2 2H P(X)=5] = 0.07142299
6 4 (2% P(X)=6] = 0.06509695
7 8 (2% P(X)=7 = 0.06216987
8 16 (2% P((X) =8 = 0.06076807
9 32 (2% Pl(X)=9] = 0.06008280
10 64 (29 P[((X)=10] = 0.05974408
11 128 (27) P(X)=11] = 0.05957570
12 256 (2%) Pl(X)=12] = 0.05949175
13 512 (29) P((X)=13] = 0.05944984
14| 1024 (2'9) P((X) =14 = 0.05942890
15| 2048 (2'1) PU(X)=15] = 0.05941844
16 | 4096 (2'%) P((X)=16] = 0.05941321
17 | 8192 (2" P((X)=17] = 0.05941059
18 | 16384 (2') P((X) =18 = 0.05940928
19 | 32747 (2% —1) | PU(X) =19] = 0.05940732
20 2 P£(X)=20] = 0.00000262
TABLE II

DISTRIBUTION OF HUFFMAN CODEWORD LENGTHS FORZIPF' S LAW

Fig. 4. Optimal branch tree for codeword lengths in optimafix coding of Zipf’s law

impact of the decision tree on overall algorithm speed.

The O(n?) complexity used to get these better results is generalljimiting. Although this restricts
the range of problems solvable within a given time, most {tadied decision tree problems are small
enough to be solved quickly. Larger problems do not genefallow this model due to issues such as
instruction caching. In addition, some problems, such asaflorementioned grade-assignment problem,
are actually better solved via alternative means whénlarge; a division and lookup table might be more
suitable, for example, if there are dozens of different gsadNote that if larger decision trees are required,
the O(n?) space requirement for finding them would likely become anesdsefore time complexity.

If p(-) is unknown or unspecified, it is common to assume fat= 1/n. This is justified by noting
that, if p(-) is considered a random vector drawn from the probabilitypséx according to density —
as in [36] — the expected cost for a given coding scheme is

1(7) 1(%)

Bp[Tre (0] = By | > p() > | = D_Bolp@] Y cr,

J=1



and, if g is a symmetric function over its argumeni8jp(i)] = 1/n for all i. Since edge costs are not
fixed, optimal trees for this uniform distribution need netdmmplete treeshat is, full trees for which all
leaves have either deptliog, n| or [log, n]. For example, the tree in Fig. 2 is optimal for this uniform
distribution with an average cost 8f75 (again, withc = (3,1)), whereas the complete tree far= 4
results in an average cost &f This is thus a better approach to use for compilers that sadieh (case)
statements partially [5] or entirely [4] as decision trees.

In most instances of static prediction, the disparity if@@nance between correctly anticipated branches
and incorrectly anticipated branches is not as great asahatcent versions of the Pentium architectures,
in which properly modeling the asymmetry of decision treefggenance is even more important.

[1l. M ORE ADVANCED MODELS

With dynamic branch prediction [14], which in more advandedms includes branch correlation,
branches are predicted based on the results of prior iressasfche same and different branch instructions.
This results in improved branch predictability for most ta@fre implementations, especially those in
which branch profiling does not enter into software desigrmew branch profiling does take place,
however, the gains are often only marginal [14, pp. 245-248s, although large processors and
general-purpose processors generally include dynamdigtien, many small processors and low-power
processors forgo dynamic prediction, as this feature’shistipation requires the usage of significant
additional semiconductor area and power for the associagd. Where dynamic prediction is used,
several predictors will often be used for the same branctiucson instance; the predictor in a given
iteration will be based on the history of that branch ingdinrcinstance and/or other branches. In the
problem we are concerned with, however, this does not r@sudis many complications as one might
expect; the probability of a given branch outcome condélam the branches that precede it is identical
to the probability of the branch outcome overall. In the cakerevious branch outcomes for the same
search instance — i.e., those of ancestors in the tree — am@y giutcome is conditioned on the same
events — i.e., the events that lead to the branch being ceresidIn the case of branches used to find
previous items, if items are independent, so are these Iheandn the case of branches outside of the
algorithm, these can also be assumed to be either fixed giverdependent of the current branch.

Thus, as long as each branch predictor is assigned at mosif dne decision tree branches, prediction
can be modeled as a random process. Although initial piediktare made using static criteria (often
including optimal branch hints, as in the Intel Pentium 4,[872-2] and the MIPS R4000 [38, p. 21]), the
dynamic process results in each predictor converging t@atzostary distribution, which can be analyzed
and optimized for. Such a random process necessarily pesfovorse than optimized static prediction,
although, in most instances, the difference is not too gfige cost of each branch result can be determined
by the expected time taken by the branch, based on the cesised and the probability that the branch
is correctly predicted. Simple analysis of the stationasgribution of a branch prediction Markov chain,
e.g., [39], can yield the expected time for a given branckdation as a function of the probability of the
branch.

Consider the example of using a saturating up-down countethe—two-bit Markov chain of [40]
shown as a Moore state diagram in Fig. 5(a) — for branch ptiediclf the predictor is in state§ or 1,
it predicts that a branch will not be taken (N), whereas ifsiin state or 3, it predicts that a branch
will be taken (T). If the actual branch is untaken, the statk decrement (with a lower bound dj);
otherwise, it will increment (with an upper bound )t The probability of misprediction is thus the joint
probability of being in state§ or 1 and the branch being taken plus the joint probability of gaim2
or 3 and the branch being untaken. This probability, found usitagndard algebraic methods for finding
the stationary distribution, is

P1 —p%

£ P[mispredict on A2= —— 1
faz(p1) [misp 2 1= 2 + 27
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Fig. 5. Moore state diagrams for branch prediction
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Fig. 6. Static and dynamic branch misprediction rates {tepettom: A3, A2, static prediction)

where p; is the probability the less likely event will occur given tlireanch being considered. This
Markov chain is used by the more recent Pentium architest[ir®] and is referred to by Yeh and Patt
as Automation A2 [41]. If branch prediction instead uses tihie-bit Markov chain of [42], as in the
MIPS-influenced pedagogical architecture in [14] and in Bigdp), then the probability of a misprediction
is given by
p1+ Pt + 4pt + 2p)

L—pi+pt
This chain is referred to by Yeh and Patt as Automation A3.

Other state diagrams were considered by Yeh and Patt, bnbane as wide use, either being too simple
or lacking symmetry between taken and untaken branches.h@ds also note that these automations
existed prior to Yeh and Patt, e.g., in [43], where it is notledt, for each of the tested programs and
architectures, there is little to no difference in perfonoabetween them. For the decision tree application,
asymptotic performance is determined by the corresponstiaipnary misprediction rate (Fig. 6), which
is worst for Automation A3 (dotted plot), having a rate up &% worse than that for static prediction
(solid plot). Automatic A2 (dashed plot) does better, besttignost 20.71% worse than static prediction.
These statistics can be used as performance bounds in catiohinvith those derived in Section Il to
approximate performance in linear time prior to applicatad the algorithm.

In either dynamic case, we can compute optimal expectedfawst the probabilities of each branch.
Assume that taken and untaken branches are symmetricsttabranch rightly predicted as untaken has
the same cost as a branch rightly predicted as taken, andeadisfed branches similarly have identical

fas(p1) £ P[mispredict on A3 =




10

costs. Let the type of dynamic prediction He let the probability of the more likely subtree pg.., and

let the probability of the less likely subtree pgi,, SO thatp,in + Pmax < 1 @ndp; = pumin/ (Pmin + Pmax)

is the probability of the less likely outcome conditional thke branch being decided upon. Then, instead
of the static cost ofyp.in + c1pmax, the expected cost of a given branch is

Pmin Pmin
C(pmimpmax) é CO(pmin +pmax)fA (7) + Cl(pmin + pmax) (1 - fA (7)) .
Pmin + Pmax Pmin + Pmax

Thus this plus the inductively computed costs of the subtieghe overall tree cost.

Additional performance factors might include an additioagaymmetry between taken and untaken
branches, the performance of branch target buffers (whieldiscussed in [43] and [14]), and differences
among different comparison types. For example, (ika>) comparison with a certain value has a smaller
cost than a comparison with another value — say a comparisittnarxpower of two times a variable is
faster due to reduced calculation time — then this can alstaken into account. Similarly, conditional
instructions, often preferable to conditional branches\ aften be used, but only to eliminate a branch to
leaves in the decision tree. Thus branches deciding betadgriwo items might be accounted differently
than other branches.

With such a variety of coding options, there could be mudtipbssible costs for any particular decision.
A general cost function taking all this into account represeasCy(p’,p", i, 7, s) the cost of choosing
the kth of m splitting methods for the step necessary to split a subedédéms|i, j| at splitting point
s, with splitting outcome probabilities’” and p”. (The most common value fon is 2, the two choices
being to assume a taken branch versus to assume an untakeh.préhe corresponding generalization
of (1) is:

c(iyi) = 0
Ckz(lvj) = Srélérjl]{Ck(p('l,S— 1)7p(57])727]7 S)+C(i78_ 1)+C(37])} vk (2)

Once again, this is a simple matter of dynamic programmimgl, @assuming all’; are calculable in
constant time, this can be done @(mn?) time andO(n* + nlogm) space, thdogm term accounting
for recalculation and storage of the type of cost functioaec{sion method) used for each branch. An
even more general version of this could take into accounpeates of subtrees other than those already
mentioned, but we do not consider this here.

Because dynamic prediction is adaptive to dynamic brancfoqmeance, we need not explicitly code
branch bias; the more and less likely branch outcomes wilbbraatically be detected. However, most
dynamic predictors begin with state that depends on the tfperanch in the same manner as static
prediction. That is, the first time a branch is encounteried, usually statically predicted. Thus it is often
worthwhile to modify the algorithm so as to have initial @dons of the decision tree behave as well as
possible given the tree optimal for asymptotic behaviochSa modification increases neither time nor
space complexity for the above algorithm.

If the software is predetermined but the tree is not — thatifishe software is not hard coded
for the specific tree — then matters change entirely; no ptiedi and static prediction result in this
problem being equivalent to that of ordered edges, the prolgroposed by Knuth and considered by ltai.
Dynamic prediction with correlations, on the other handy oesult in a number of outcomes, depending
on implementation. The software on a given processor coaNe hear-perfect distinguishing of outcomes,
in which the above dynamic analysis persists. More likelfhaut sufficient unrolling [14] of the tree data
structure, there would be confusion of outcomes, as thavacodt would not know whether all previous
branches untaken indicates being at the root, at its righd, @t its right child’s right child, etc. Optimizing
for the complex dependencies involved with such a systeno i®mger within the above framework, and
the overall averaging effect means that one might want tajjses the tree optimal for a corresponding static
problem. Therefore the aforementioned methods are usba#ly suited for when the user has the option
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Fig. 7. Sample search trees

of designing software specifically for a given decision treedesigning hardware and/or programmable
logic to allow the methods to work in fixed software.

V. SEARCH TREES AND EQUALITY COMPARISONS

Knuth showed how a dynamic programming approach can be osegheral search trees [7], in which
the decision is no longer binary, but is instead, “Is the autpeater than, less than, or equakf® This
allows items to be implicitly or explicitly stored within ¢hinternal nodes (nonleaves) of the decision tree
and allows us to consider items that might not be in a seassh ffhis model generalizes the concept
of an alphabetic decision tree and can be used for appliatiowhich there is an inherent “dictionary”
known of items, such as token parsing and spell checkingod®ibties for both present and missing
items are then needed.

Before formalizing this, we should note a few things abot sipplicability of the search tree model.
Clearly the grade-finding problem at the beginning of thipgradoes not fall into this model, as strict
equality cannot be tested for apart from directional inditjuegEven where this model is applicable, it
can be too restrictive. For example, this model is oftenriofeto the alphabetic model for the simple
reason that, on most hardware, including all hardware densd here, three-way branches are not native
operations. They must thus be simulated by two two-way r@sdn a manner that actually results in
greater run time. Experimental analysis of this phenomerambe found in [44] and numerical analysis
can be found in [45] and [46, pp. 344—-345]. These all find tmaalghabetic tree is usually preferable in
practice. Thus we only briefly discuss issues of this seaesh hodel.

For items1 throughn’, 5; is defined as the probability that a search yields itemnd «; as the
probability that a search fails and the item not in the sedreb would be lexicographically between
items: andi + 1; aq is the probability it is befored; and«,, is the probability it is after3,. Thus

Z Bi + Z a; = 1.
=1 =0

The alphabetic tree scenario is a special case, withn — 1, 8; = 0, anda; = p(i + 1), as in Fig. 7(a)
for n = 5. Fig. 7(b) is a similar search tree configured for a three-e@yparison; this time, there are
only four items, and it is assumed that all items searchedvitirbe in the tree. Fig. 7(c) is the same
four-item search tree allowing one to search for both itemtheé tree (with probabilitie$; }) and ranges
of missing items (with probabilitie$a; }).

In such a model, there are now three costs associated withea gode; the cost of the two branches
¢o and ¢y, and the cost of an equality, The addition of this cost to (1) in the case of static predict
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or no prediction yields:

c(iyi) = 0
p(’L,Z) =
d(i,7) = mingejfcop(i,s —1) +cip(s,j) +eBs +c(i,s —1) +c(s,5)}
d(i,j) = mingeq {cip(i,s — 1) +cop(s,j) +efs +c(i,s — 1) +c(s,j)}
c(i,j) = min{d(i, ), " (2, 7)}
p(i,j) = pli,s—1)+ B +p(s,j) Vs

where the root case ig(0,n') and p(i, j) is usually calculated using the optimizingfor the overall
subtree in question.

Again, one can generalize this as in (2); for example, theé eban equality comparison need not be
fixed. A further generalization in which the equality compan key value is different than the inequality
comparison value has been considered for the constant estge e.g., [47], [48]. Approaches for solving
this have led to the more germane problem in which, rather #ileswing an inequalityand an equality
comparison in each step, one allows an inequalityan equality comparison in each step. This is known
as thetwo-way key comparisoproblem. If data are highly irregular such that the most ple item
is much more probable than any other and is alphabeticaltherefirst nor last, then an initial equality
comparison to the most probable item — if feasible — wouleljkimprove on the “optimal’(<, >)
decision tree. For fixed edge costs, the algorithm for sgltfis is aO(n°)-time O(n?)-space dynamic
programming algorithm [49]. In this algorithm, instead a&f: and j, a third variabled represents the
number of items missing from the subtree due to equality @ispns above this subtree; this accounts
for the increased complexity. This algorithm uses the adnje that equality comparisons should always
be with the most likely (remaining) item. This was not provied equal edge costs, and, even given
its veracity for equal edge costs, it is not clear whethes tould also be true for unequal edge costs.
Nevertheless, no counterexample has been presented,ssa #afe assumption to make, especially since
such trees would necessarily perform at least as well asghimal binary decision tree.

The two-way comparison algorithm has been extended to a laagiety of problems, including a
problem with nine different branch costs: unequal (ordeibts for(=, #) testing, unequal (ordered)
costs for(<, >) testing, unequal (ordered) costs fer, >) testing, and unequal (ordered) costs for three-
way testing [50, Chapter 9]. This algorithm can be easily ifiredi for unordered costs by adding tests for
(#,=), (>,<), (>,<), and other three-way tests. Other modifications can be nradesimilar manner
to those discussed in this paper. Note that some varianti®©ptoblems have complexity reduced from
O(n®) to O(n) [49], [51], although this has not been shown to be true of tleeengeneral cases which
most accurately represent the behavior of hard-coded Iséaes.

V. CONCLUSION

In this paper, we presented methods for finding optimal datiand search trees given the real-world
behavior of microprocessors, in which not all queries andisien outcomes have identical temporal
costs. This approach most often assumes we can hard codediseod tree based on a known probability
distribution and known processor behavior. The simpleshotw that of Section Il, must be generalized for
more complex processor prediction techniques, as wellrastfi@r subtler performance considerations and
for cases in which equality comparisons are allowed. Dud¢oldrge asymmetry of branch performance
in complex processors, this often results in strictly lreti@rd-coded search trees than the “optimal” trees
produced using traditional methods.
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