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Abstract— The decision tree is one of the most fundamental
programming abstractions. A commonly used type of decision
tree is the alphabetic binary tree, which uses (without loss
of generality) “less than” versus ”greater than or equal to”
tests in order to determine one of n outcome events. The
process of finding an optimal alphabetic binary tree for a
known probability distribution on outcome events usually has
the underlying assumption that the cost (time) per decisionis
uniform and thus independent of the outcome of the decision.
This assumption, however, is incorrect in the case of software to
be optimized for a given microprocessor, e.g., in compilingswitch
statements or in fine-tuning program bottlenecks. The operation
of the microprocessor generally means that the cost for the more
likely decision outcome can or will be less — often far less —
than the less likely decision outcome. Here we formulate a variety
of O(n3)-time O(n2)-space dynamic programming algorithms to
solve such an optimal binary decision tree problem, optimizing
for the behavior of processors with predictive branch capabilities,
both static and dynamic. In the static case, we use existing results
to arrive at entropy-based performance bounds. Solutions to this
formulation are often faster in practice than “optimal” dec ision
trees as formulated in the literature, and, for small problems, are
easily worth the extra complexity in finding the better solution.
This can be applied in fast implementation of Huffman coding.

I. I NTRODUCTION

Consider a problem of assigning grades to tests. These tests
might be administered to humans or to objects, but in either
case there are grades1 through n — n being 5 in most
academic systems — and the corresponding probabilities of
each grade,p(1) throughp(n), can be assumed to be known;
if unknown, they are assumed to be identical. Each grade is
determined by taking the actual score,a, dividing it by the
maximum possible score,b, and seeing which ofn distinct
fixed intervals of the form[vi−1, vi) the key (ratio)a/b lies in,
wherev0 = −∞ andvn = +∞. This process is repeated for
different values ofa andb enough times that it is worthwhile
to consider the fastest manner in which to determine these
scores.

A straightforward manner of assigning scores would be to
multiply (or shift) a by a constantk (log2 k), divide this byb,
and use lookup tables on the scaled ratio. However, divisionis
a slow step in most CPUs — and not even a native operation
in others — and a lookup table, if large, can take up valuable
cache space. The latter problem can be solved by using a
numerical comparisons to determine the score, resulting in
a binary decision tree(also known as analphabetic binary
tree). In fact, with this decision tree, we can eliminate division
altogether; instead of comparing scaled ratioka/b with grade

if (V >= 34) A. compare V, 34
B. branch to M if V<34

if (V >= 42) C. compare V, 42
D. branch to K if V<42

if (V >= 65) E. compare V, 65
F. branch to I if V<65

P = 1; G. P = 1
else H. go to N
P = 2; I. P = 2

else J. go to N
P = 3; K. P = 3

else L. go to N
P = 4; M. P = 4

N. end

Fig. 1. Steps in a simple decision tree

cutoff value,vi, we can equivalently compareka with bvi,
replacing the slow division of variable integers with a fast
multiplication of a variable and a fixed integer. Depending
on the application, this can be useful even ifb = 1. The only
matter that remains is determining the structure of the decision
tree.

The desired tree has a large variety of applications —
including the compilation of switch (case) statements [8],[23]
— and an optimized decision tree is known as anoptimal
alphabetic binary tree. Often times these decision trees are
hard coded into software for the sake of efficiency, as in
the high-speed low-memory ONE-SHIFT Huffman decoding
technique introduced in [22] and illustrated using C code in
Fig. 2 of the same paper. A shorter but similar decision tree
is illustrated in Fig. 1 above by means of C and assembly-like
pseudocode. We discuss this sample tree in Section II, where
a pictorial representation is given as Fig. 2.

Algorithms used for finding such trees generally find trees
with minimum expected path length, or, equivalently, mini-
mum expected number of comparisons [5], [11], [15]. We,
however, want a tree that results in minimum average run time.
The general assumption in finding an optimal decision tree is
that these goals are identical, that is, that each decision (edge)
takes the same amount of time (cost) as any other; this is noted
in Section 6.2.2 of Knuth’sThe Art of Computer Programming
[18, p. 429]. In exercise 33 of Section 6.2.2, however, it is
conceded that this is not strictly true; in the first edition,the



exercise asks for an algorithm for where there is an inequity
in cost between a fixed cost for a left branch and a fixed cost
for a right branch [16], and, in the second edition, a reference
is given to such an algorithm [13]. Such an approach has been
extended to cases where each node has a possibly different,
but still fixed, asymmetry [24].

In practice the asymmetry of branches in a microprocessor
is different in character from any of the aforementioned
formulations. On complex CPUs, such those in the Pentium
family, branches are predicted as taken or untaken ahead
of execution. If the branch is predicted correctly, operation
continues smoothly and the branch itself takes only the equiv-
alent of one or two other instructions, as instructions that
would have been delayed by waiting for the branch outcome
are instead speculatively executed. However, if the branchis
improperly predicted, a penalty for misprediction is incurred,
as the results of speculatively executed instructions mustbe
discarded and the processor returned to the state it was at prior
to the branch, ready to fetch the correct instruction stream[9].
In the case of the Pentium 4 processor, a mispredicted branch
takes the equivalent of scores of instructions [4]. This penalty
has only increased with the deeper pipelines of more recent
processors.

In this paper, we discuss the construction of alphabetic
binary trees that are optimized with respect to the behavior
of conditional branches in microprocessors. We introduce a
general dynamic programming approach, one applicable to
such architecture families as: the Intel Pentium architectures,
which use advanced dynamic branch prediction; the ARM
architectures, most instances of which use static branch pre-
diction; and Knuth’s MMIX architecture, in which branch
instructions explicitly “hint” whether or not the corresponding
branches are assumed taken or untaken [19, p. 20]. The first
two are not only representative of two styles of branching;
they are also by far the most popular processor architecture
families for 32-bit personal computers and 32-bit embedded
applications, respectively. Because the approach introduced
here is more general than extant alphabetical and search
dynamic programming methods, the algorithms arising out of
it are somewhat slower, havingO(n3)-time O(n2)-space per-
formance. This generality allows for different costs (run times)
for different comparisons due to such behaviors as dynamic
branch prediction and the use of conditional instructions other
than branches. In the simplest case of static branch prediction,
entropy-based performance bounds are obtained based on
known results from related unequal edge-cost problems. It
should be emphasized that the one-timeO(n3)-time O(n2)-
space cost of optimization of these (usually small) problems
is dwarfed by even the slightest gain in repeated run-time
performance. The main contribution is thus a method by which
decision trees can be coded on known hardware with minimum
expected execution time.

II. N O PREDICTION AND STATIC PREDICTION

Consider Knuth’s pedagogical MMIX architecture [19],
which has a simple rule for branching: If a “hint” indicates
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Fig. 2. An optimal branch tree with edge costs forc = (c0 c1) = (3 1)

that a branch should be taken, a taken branch will take fewer
cycles; otherwise, an untaken branch will take fewer cycles.
Thus, if we know ahead of time which branch is more likely
and which less likely, we can hard code the more likely branch
to take1+c clock cycles and the less likely branch to take3+c
clock cycles, wherec represents the time taken by instructions
other than the branch itself, e.g., multiplications, additions,
comparisons.

It is similarly easy to code the asymmetric bias of the branch
for implementations of static branch prediction. In static
prediction, opcode or branch direction is used to determine
whether or not a branch is taken, the most common rule
being that forward conditional branches are presumed taken
and backward conditional branches are presumed not taken [9].
Assume, for example, that we want to use a forward branch,
which is assumed not to be taken. We thus want the least likely
outcome to be that the branch is taken: For example, if it is
less likely than not that the item is less thanvi, the branch
instruction should correspond to “branch if less thanvi,” as in
all branches used in Fig. 1.

This branching problem, applicable to problems with either
no true branch prediction or static branch prediction, considers
positive weightsc0 andc1 such that the cost of a binary path
with predictabilityb1b2 · · · bk is

k
∑

j=1

cbj

where bj = 0 for a mispredicted result andbj = 1 for a
properly predicted result. Such tree paths are often pictorially
illustrated via longer edges on the corresponding tree, so that
path height corresponds to path cost, e.g., Fig. 2. This tree
corresponds to the C code and pseudocode tree discussed
above. Thus the overall expected cost (time) to minimize is

T (b) ,

n
∑

i=1

p(i)

l(i)
∑

j=1

cbj(i)

wherep(i) is the probability of theith item,l(i) is the number
of comparisons needed, andbj(i) is 0 if the result of thejth
branch for itemi is contrary to the prediction and1 otherwise.

More formally,



Given p = (p(1), . . . , p(n)), p(i) > 0,
∑

i p(i) = 1;
c0, c1 ∈ R+ such thatc0 ≥ c1

find B, a full binary tree;
b, an assignment of costs to the
edges ofB such that each nonleaf
is connected to one child by an edge
with costc0 and to the other child
by an edge with costc1

minimizing T (b) ,
∑n

i=1 p(i)
∑l(i)

j=1 cbj(i)

where thejth edge along the path from
the root to theith leaf is assigned
costcbj(i);
the number of edges of the path
to the ith leaf is l(i).

A sample representation is shown in Fig. 2, labeled with the
values ofbj(i). To emphasize the total cost in this pictorial
representation, edges are portrayed with height proportional to
their cost. The cost (and thus depth) of leaf3 is, for example,

∑

j

cbj(3) = cb1(3) + cb2(3) + cb3(3)

= c1 + c1 + c0

= 1 + 1 + 3 = 5.

Table I gives the context for this branching problem among
other optimal binary tree problems. These other problems
are referred to as in the survey paper [1]. In most problem
formulations, edge cost is fixed, and, where it is not fixed,
edges generally have costs according to their order, i.e., aleft
edge has costc0 and a right edge has costc1. Relaxing this
edge-order constraint in the unequal-cost alphabetic problem
results in the branching problem we are now considering.
Relaxing the alphabetic constraint from either the original
alphabetic problem or the branching problem leads to Karp’s
nonalphabetic problem; since output items in Karp’s problem
need not be in a given (e.g., alphabetical) order, the tree
optimal for the ordered-edge nonalphabetic problem is also
optimal for the unordered-edge nonalphabetic problem.

Thus the cost for the optimal tree under Karp’s formulation
— also called thelopsided tree problem— is a lower bound
on the cost of the optimal branch tree, whereas the cost for the
optimal tree under Itai’s (alphabetic) formulation is an upper
bound on the cost of the optimal branch tree. This enables the
use of bounds in [2] — including the lower bound originally
formulated in [20] — for the branching problem. Specifically,
if bopt is the optimal branching function, then

H(p)

d
≤ T (bopt) ≤ H(p) + 1

d
+ max {c0, c1}

whereH is the entropy functionH(p) = −
∑

i p(i)log2p(i)
andd satisfies2−dc0 + 2−dc1 = 1. If ρ = c0/c1 andx is the
sole positive root ofxρ + x − 1 = 0, thend = −c−1

1 log2x.

Thus, for example, whenc = (3 1),

x =
3

√

1

2
+

√

31

108
− 3

√

−1

2
+

√

31

108

so d = log2x
−1 ≈ 0.551. When c = (2 1), x = 1/φ so

d = log2φ, whereφ is the golden ratio,φ = (
√

5 + 1)/2.
The key to constructing an optimizing algorithm is to note

that any optimal branching tree must have all its subtrees
optimal; otherwise one could substitute an optimal subtreefor
a suboptimal subtree, resulting in a strict improvement in the
result. The branching problem is thus, to use the terminology
of [26], subtree optimal. Each tree (and subtree) can be defined
by its splitting points. A splitting point s for the root of the
tree means that all items (grades) afters and includings will
be in the right subtree while all items befores will be in the
left subtree, as per the convention in [6], [15], [18]. Sincethere
aren− 1 possible splitting points for the root, if we know all
potential optimal subtrees for all possible ranges, the splitting
point can be found through sequential search of the possible
combinations. The optimal tree is thus found through dynamic
programming, and this algorithm hasO(n3) time complexity
andO(n2) space complexity, in a similar manner to [6].

The dynamic programming algorithm is relatively straight-
forward. Each possible optimal subtree for itemsi throughj
has an associated cost,c(i, j) and an associated probability
p(i, j); at the end,p(1, n) = 1 and c(1, n) is the expected
cost (run time) of the optimal tree.

The base case and recurrence relation we use are similar
to those of [13]. Given unequal branch costsc0 and c1 and
probability mass functionp(·) for 1 throughn,

c(i, i) = 0
c′(i, j) = mins∈(i,j]{c0p(i, s − 1) + c1p(s, j) +

c(i, s − 1) + c(s, j)}
c′′(i, j) = mins∈(i,j]{c1p(i, s − 1) + c0p(s, j) +

c(i, s − 1) + c(s, j)}
c(i, j) = min {c′(i, j), c′′(i, j)}

(1)

wherep(i, j) =
∑j

k=i p(i) can be calculated on the fly along
with c(i, j). The last minimization determines which branch
condition to use (e.g., “assume taken” vs. “assume untaken”),
while the minimizing value ofs is the splitting point for
that subtree. The branch condition to use — i.e., the bias of
the branch — must be coded explicitly or implicitly in the
software derived from the tree.

Knuth [15] and Itai [13] begin with similar algorithms, then
reduce complexity by using the property that the splitting point
of an optimal tree for their problems must be between the
splitting points of the two (possible) optimal subtrees of size
n−1. The branching problem considered here, however, lacks
this property. Considerp = (0.3 0.2 0.2 0.3) and c = (3 1),
for which optimal trees split either at2, as in Fig. 2, or at
4, the mirror image of this tree. In contrast, the two largest
subtress, as illustrated in the figure and its mirror image, both
have optimal splitting points at3.

The optimal tree of Fig. 2 is identical to the optimal tree
returned by Itai’s algorithm for order-restricted edges [13].



restriction on edge order and/or cost

restriction on output order Constant edge cost Fixed edge-cost order Unrestricted edge-cost order

Alphabetic Hu-Tucker [5], [6], [11], [18] Itai [13], [24] branching problem

Nonalphabetic Huffman [12], [17], [27] Karp [3], [7], [14]

TABLE I

TYPES OF DECISION TREE PROBLEMS

Consider a larger example in which this is not so, the binomial
distribution p = (1 6 15 20 15 6 1)/128 with c = (11 2).
If edge order is restricted as in [13], the optimal tree has
an expected cost of967/64 = 15.109375. If we relax the
restriction, as in the problem under consideration here the
optimal method has an expected cost of831/64 = 12.984375,
a 14% improvement.

A practical application of this problem, involving a decision
tree, is encountered in implementation of the ONE-SHIFT

Huffman decoding technique introduced in [22]. This imple-
mentation of optimal prefix coding is fastest for applications
with little memory or small caches. Where the ONE-SHIFT

technique is the preferred technique, we can apply the methods
of this section to optimize the method’s decision tree. In the
implementation illustrated in [22], the decision tree is used
to determine codeword lengths based on 32-bit keys. The
suggested “optimal search” strategy involves a hard-coded
decision tree in which branches occur if “greater than or equal
to” each splitting point; in most static branch schemes, this
would result in “less than” taking fewer cycles than “greater
than or equal to,” but the tree used in [22] was found assuming
fixed branch costs [25]. Here we show that we can improve
upon this.

Consider the optimal prefix code for random variableX
drawn from the Zipf distribution withn = 216, that is,

P[X = i] =
1

i
∑n

j=1 j−1

which is approximately equal to the distribution of then most
common words in the English language [28, p. 89]. Using
Huffman coding, one can find that this code has codeword
lengths,ℓ(X), between4 to 20, with the number of codewords
of each size and the probability that the codeword will be a
certain size given by Table II.

Consider a decision tree to find codeword lengths with
an architecture in which comparisons that result in untaken
branches take3 cycles (for both compare and branch), while
comparisons that result in taken branches take5 cycles. This
asymmetry, similar to that of many ARM architectures, is
small, but taking advantage of it results in an improved tree.
This optimal tree, shown in Fig. 3, takes an average of15.93
cycles, while the “optimal search” takes an average of16.44
cycles. This 3.1% improvement, although not as large as the
previous examples, is still significant due to the impact of the
decision tree on overall algorithm speed.

length (ℓ) # of codewords p(i)
4 1 (20) P[ℓ(X) = 4] = 0.08570759
5 2 (21) P[ℓ(X) = 5] = 0.07142299
6 4 (22) P[ℓ(X) = 6] = 0.06509695
7 8 (23) P[ℓ(X) = 7] = 0.06216987
8 16 (24) P[ℓ(X) = 8] = 0.06076807
9 32 (25) P[ℓ(X) = 9] = 0.06008280

10 64 (26) P[ℓ(X) = 10] = 0.05974408
11 128 (27) P[ℓ(X) = 11] = 0.05957570
12 256 (28) P[ℓ(X) = 12] = 0.05949175
13 512 (29) P[ℓ(X) = 13] = 0.05944984
14 1024 (210) P[ℓ(X) = 14] = 0.05942890
15 2048 (211) P[ℓ(X) = 15] = 0.05941844
16 4096 (212) P[ℓ(X) = 16] = 0.05941321
17 8192 (213) P[ℓ(X) = 17] = 0.05941059
18 16384 (214) P[ℓ(X) = 18] = 0.05940928
19 32748 (215) P[ℓ(X) = 19] = 0.05940732
20 2 P[ℓ(X) = 20] = 0.00000262

TABLE II

DISTRIBUTION OF HUFFMAN CODEWORD LENGTHS FORZIPF’ S LAW

III. M ORE ADVANCED MODELS

With dynamic branch prediction [9], which in more ad-
vanced forms includes branch correlation, branches are pre-
dicted based on the results of prior instances of the same and
different branch instructions. This results in complex processor
behavior. Often several predictors will be used for the same
branch instruction instance; the predictor in a given iteration
will be based on the history of that branch instruction instance
and/or other branches. In the problem we are concerned with,
however, this does not result in as many complications as
one might expect; the probability of a given branch outcome
conditional on the branches that precede it is identical to
the probability of the branch outcome overall. In the case of
previous branch outcomes for the same search instance —
i.e., those of ancestors in the tree — any given outcome is
conditioned on the same events — i.e., the events that lead
to the branch being considered. In the case of branches for
previous items, if items are independent, so are these branches.
In the case of branches outside of the algorithm, these can
also be assumed to be either fixed given or independent of the
current branch.

Thus, as long as each branch predictor is assigned at
most one of the decision tree branches, prediction can be
modeled as a random process. This process will result in each
predictor converging to a stationary distribution, which can be
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Fig. 3. Optimal branch tree for codeword lengths in optimal prefix coding
of Zipf’s law

analyzed and optimized for. Simple analysis of the stationary
distribution of a branch prediction Markov chain, e.g., [10],
can yield the expected time for a given branch direction as a
function of the probability of the branch.

Additional performance factors might include an additional
asymmetry between taken and untaken branches, the per-
formance of branch target buffers (which are discussed in
[21]), and differences among different comparison types. For
example, if a(<,≥) comparison with a certain value has a
smaller cost than a comparison with another value — say a
comparison with a power of two times a variable is faster due
to reduced calculation time — then this can also be taken into
account. Similarly, conditional instructions, often preferable to
conditional branches, can often be used, but only to eliminate
a branch to leaves in the decision tree. Thus branches deciding
between only two items might be accounted differently than
other types.

With such a variety of coding options, there could be
multiple possible costs for any particular decision. A gen-
eral cost function taking all this into account represents as
Ck(p′, p′′, i, j, s) the cost of choosing thekth of m splitting
methods for the step necessary to split a subtree for items[i, j]
at splitting points, with splitting outcome probabilitiesp′ and
p′′. (The most common value form is 2, the two choices
being to assume a taken branch versus to assume an untaken
branch.) The corresponding generalization of (1) is:

c(i, i) = 0

ck(i, j) = min
s∈(i,j]

{Ck(p(i, s − 1), p(s, j), i, j, s) +

c(i, s − 1) + c(s, j)} ∀k

c(i, j) = min
k∈[1,m]

{ck(i, j)} .

Once again, this is a simple matter of dynamic programming,
and, assuming allCk are calculable in constant time, this can
be done inO(mn3) time andO(n2+n logm) space, thelog m
term accounting for recalculation and storage of the type of

cost function (decision method) used for each branch. An even
more general version of this could take into account properties
of subtrees other than those already mentioned, but we do not
consider this here.
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